

U.S. MAGNET DEVELOPMENT PROGRAM

Modeling of the Interface Debonding Status and Future Plans

G. Vallone¹, E. Anderssen¹, D. Arbelaez¹, L. Brower¹, P. Ferracin¹, J. L. Rudeiros¹, S. Prestemon¹, T. Shen¹, S. Yin¹

Lawrence Berkeley National Laboratory

US-MDP Collaboration Meeting 2021 05 March 2021

• Interface strength: measurements and models

CCT debonding model

Conclusion

. DEPARTMENT OF

Office of

Science

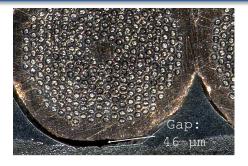
G. Vallone

• Interface strength: measurements and models

CCT debonding model

Conclusion

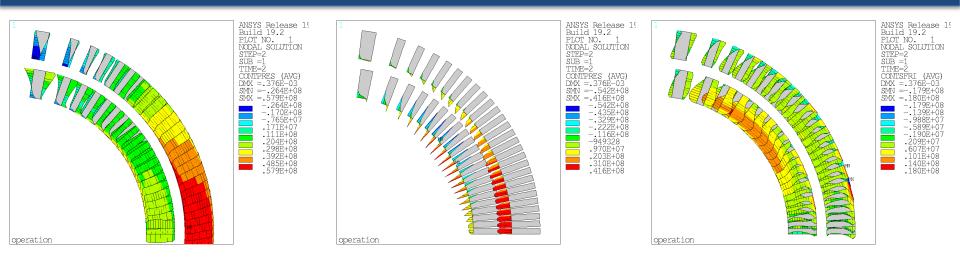
. DEPARTMENT OF


Office of

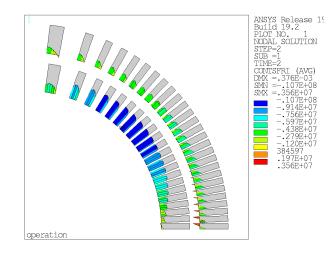
Science

G. Vallone

Bonded joints (interfaces) are commonly used in superconducting magnets coils


- ο Pole/coil, pole/wedges in cos(ϑ) designs
- o Pole/coil in block coils
- Even more used in certain 'stress-managed' designs: e.g. spar/cable and rib/cable in CCT magnets

• These interfaces can fail:


- Their failure is considered one of the possible cause of training
- Our failure criteria are often empiric (e.g. 20 MPa on the max/avg. tension)
- o Shear stress rarely considered as possible source of failure
- In FE models we often consider only 2 cases: perfectly **bonded**, and completely **debonded** (with or without friction)
 - Reality can be in between... The interface may be failed only partially
 - As often happens on supercond. magnets, almost impossible to **measure** during a magnet test...

CCT5 FE Model - Tension

- FE 2D numerical model of CCT5 **bonded** contacts
- Normal contact status during powering:
 - Conductor/rib: 26 MPa max **tension** on the first turn
 - Conductor/spar: worst condition at ~45°with 54 MPa of tension
- Shear contact status:
 - Conductor/rib: 18 MPa max shear stress on the outer layer
 - Conductor/spar: worst condition at ~45° with 10 MPa of shear stress at the interface
- After 'partial' detachment the situation could change: increase of tension on other interfaces?

G. Vallone

The Plan

- Our FE models are often neglecting significant mechanical phenomena would be acceptable only if the bonded joints were strong enough (design?)
- Preliminary **plan**:
 - 1. Measure interface behavior with ad-hoc experiments
 - 2. Develop a FE model of the experiments
 - 3. Calibrate the interface models on the measurements
 - 4. Use the calibrated model on a **2D** model of a CCT magnet (CCT5) / subscale
 - 5. Develop **3D** models (probably need to re-calibrate the interface models)

• Goals:

- Understand better the debonding process at the coil/mandrel (pole...) interface
- Reproduce and understand CCT4/5 training
- Propose improvements (that might be tested on the subscale)

• Disclaimer:

• The results presented hereafter, especially in absence of more measurements, can provide only a qualitative reproduction of the real magnet behavior.

• Interface strength: measurements and models

CCT debonding model

Conclusion

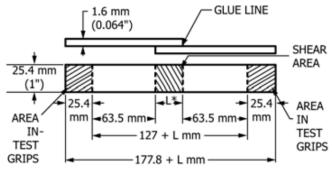
. DEPARTMENT OF

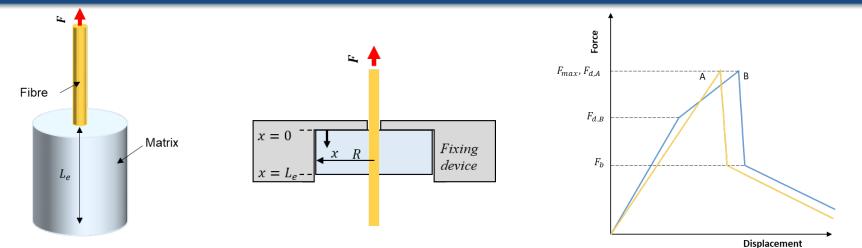
Office of

Science

G. Vallone

Interface Properties Measurements



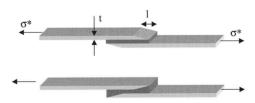


FIG. 1 Form and Dimensions of Test Specimen

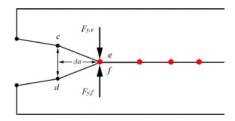
- Preliminary measurements on single lap and double lap shear samples
 - Single lap useful for mixed mode (tension+shear) failure (likely to occur in magnets)
 - Double lap useful for verification of shear failure
- These tests tried to **reproduce** as close as possible the **coil/structure** interfaces
 - Copper/copper (single-lap), impregnated insulation/Aluminum bronze (double-lap)
- Still **missing** some effects:
 - Reaction impact on bonding
 - Effect of **temperature**, insulation **thickness**, etc.
- Released energy during crack propagation?

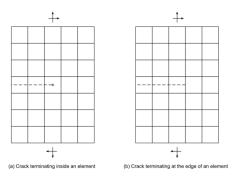
U.S. MAGNET DEVELOPMENT PROGRAM Interfacial Shear Strength Characterization – Pull-out Technique

- **Experiments planned**, using the **pull-out** technique:
 - Quick and versatile sample preparation, allowing for the characterization of the main three types of interfaces present in the Nb3Sn based CCT coil:
 - 1. Nb₃Sn strands Resin 2. S-2 glass insulation Resin 3. Mandrel Resin
 - Direct estimation of both interfacial **shear strength** (IFSS) and **friction** coefficient between constituents.
- Proposed measurements:
 - Different resins at room temperature, including CTD-101K as a benchmark, with at least 10 samples per system.
 - Further studies might include thermal analysis, 77 K testing, SEM examination of debonded surfaces.

Proposal by J. L. Rudeiros

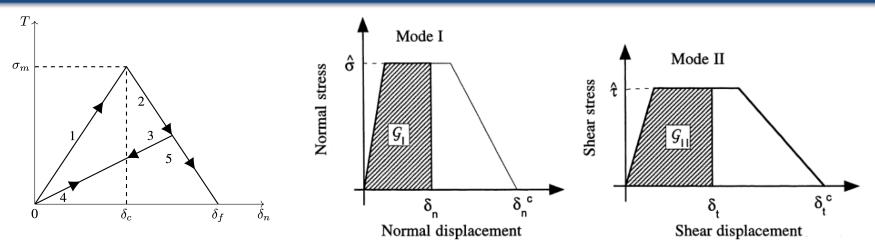

Debonding Material Models

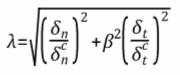

- Many **methodologies** available to simulate debonding:
 - 'Manually' kill contact elements needs a failure criteria (e.g. max tension/shear, VCCT). Does not allow to 'degrade' the contact stiffness during failure.
 - **VCCT** (Virtual Crack Closure Technique, used as fracture criteria)
 - Plastic glue models with/without killing the underlying contact
 - Cohesive zone model (CZM)
 - **SMART** crack growth (K₁/J-integral + adaptive re-meshing)
 - **XFEM** special elements that allow the crack propagation inside. More useful when the crack propagation path is unknown.
- Here after we use **CZM**, particularly suited to our scope:
 - We already know the potential failure locations (interfaces...)
 - Allows to simulate **mixed** mode failure, glue plasticity
 - No need for:


Office of

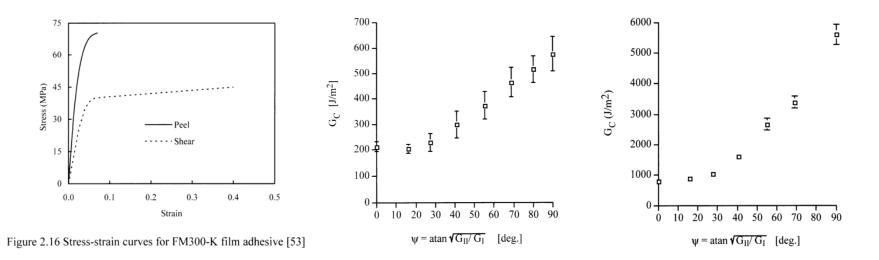
Science

- **Special meshes** near the crack (**no remesh** after propagation)
- Explicitly **model** the **glue** easy to extend available models
- Material properties required:
 - Glue elastic properties (E, nu) and thickness (difficult to know in our case...)
 - Elastic and shear strength
 - Fracture release energy for both modes (G_{Ic}, G_{Ilc})





Cohesive Zone Material Model

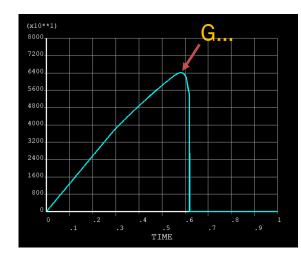


- Cohesive zone model for **single-mode** failure:
 - Initial slope dictated by the **glue modulus** and **thickness** \rightarrow Glue thickness can change the joint strength...
 - δ_c is the displacement at the **damage** 'start'
 - Degraded stiffness for damaged interfaces
 - δ_f is the displacement at the **debonding completion**
 - Damage defined as: $\lambda = \frac{\delta \delta_c}{\delta_c}$ for $\delta > \delta_c$, 0 otherwise
 - Total area below the curve equal to the energy release rate G
- Mixed-mode failure:
 - Quadratic sum for mixed mode debonding (beta assumed equal to 1 here)
- Some issues:
 - Standard ANSYS allows only for **bilinear** laws with mixed mode failure (more can be added with subroutines)
 - Post-debonding friction does not work (should work, seems a bug. Can still activated manually during solution)

How strong can adhesive joints be?

- Tensile strength of bonded joints is usually lower than 100 MPa (50 MPa for Shear)
- Common values around 70 MPa tensile, 35 MPa shear
 - Tresca criterion seems to apply on most adhesives (shear = 1/2 tensile)
 - A reliable 70 MPa bonding strength would allow to significantly decrease stresses on the conductor in many designs...
 - This would also require a glue layer 'thicker' than what we normally consider (0??)
- G_c(Ψ) curves measured on different adhesive systems (Cybond 4523GB, Permabond ESP 310) suggest that roughly: G_{IIc}~3G_{Ic}

Material Model Calibration


DOUBLE LAP JOINT TEST													
smax	Gcn		tmax	(Gct	Fmax		Stress					
MPa	J,	/m2	MPa	J	/m2	N/m		N/mm2					
	10	20	0	10	600) 97	7612	9.7					
	20	20	0	10	600) 98	3746	9.8					
	20	20	0	20	600) 193	3175	19.3					
	20	20000	0	10	60000	99	9584	9.9					
	70	20	0	35	600	312	2706	31.2					

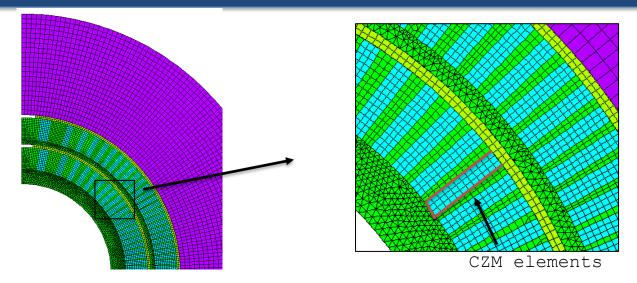
SINGLE LAP JOINT TEST											
smax	Gc	n tmax	Gc	t I	- max	Stress					
MPa	J/r	m2 MPa	J/r	n2 I	N/m	N/mm2					
	20	200	10	600	92750	9.28					
	20	100	10	300	90749	9.07					
	20	50	20	150	87933	8.79					
	20	25	10	75	73215	7.32					
	24	50	12	150	100081	10.01					
	24	25	12	75	74081	7.41					
	24	30	12	90	81397	8.14					

• Assumptions: 1.
$$\tau_R = \frac{1}{2}\sigma_R$$
 2. $G_{n_c} = \frac{1}{3}G_{t_c}$ 3. $E = 5 GPa$

- tensile strength: 24 MPa, shear strength: 12 MPa
- Single lap joint results used to calibrate the fracture toughness
 - Fracture toughness, mode I: 30 J/m² mode II: 90 J/m²
- Preliminary values, more exp. data needed
 - E.g. the **disp./force curve** might allow for a better **toughness** calibration
 - Available data not clean enough
 - Measurements at room temperature no data at cold

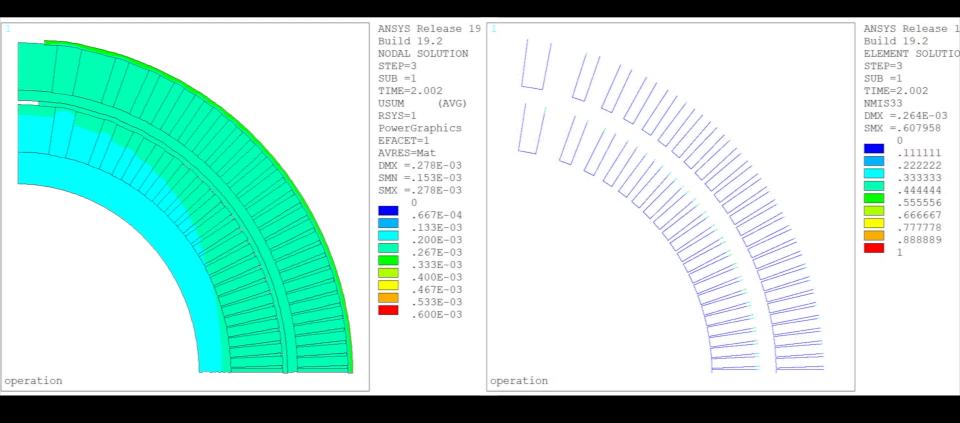
• Interface strength: measurements and models

• CCT debonding model


• Conclusion

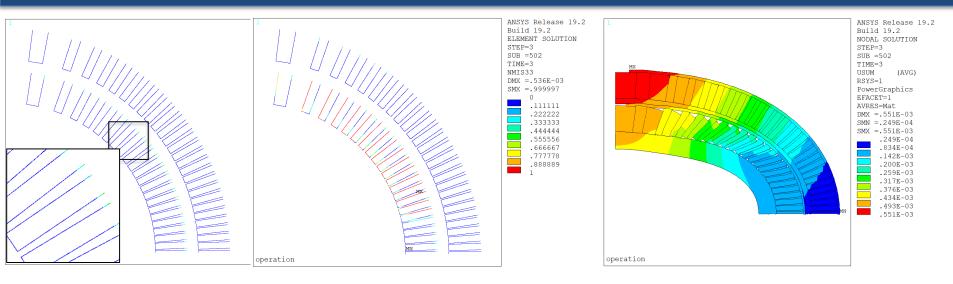
G. Vallone

CCT Model Description

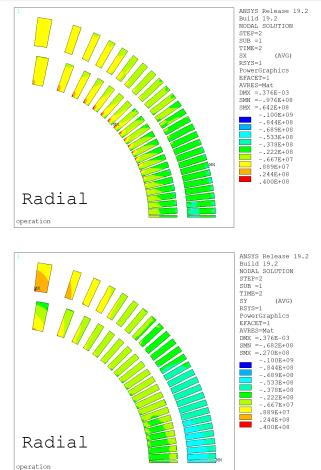

- Contact elements with CZM properties around the cable (cable/spar, cable/rib)
- Shim 'angle' increased w.r.t reality otherwise some of the conductor 'blocks' fly away after detachment
 - This region is not realistic in 2D anyway
- Elasto-plastic material model for the conductor
 - Extracted from RVE models of the cable
- 'Single ramp' simulation cooldown, then current is increased no powering/quench/powering simulation

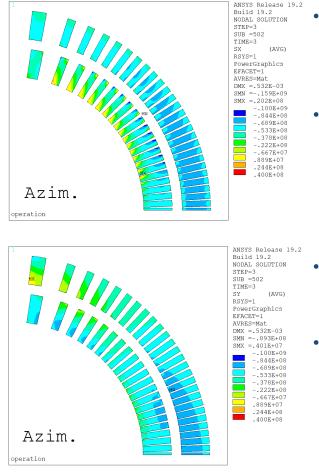
G. Vallone

Failure during powering



G. Vallone

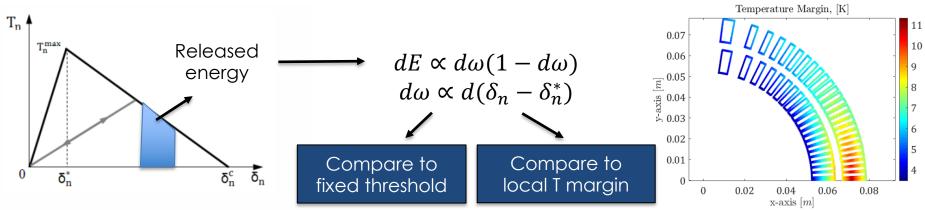

Failure during powering



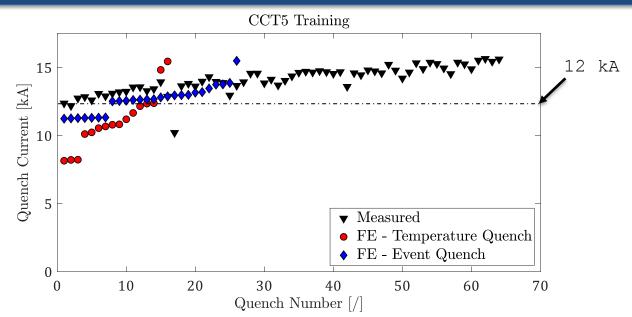
- Some 'small' detachment after cooldown at the outer radius
 - This is what you might **see** looking at the coil after a test...
 - Almost no damage inside!
- Significant damage on the inner layer negligible on the outer layer
 - Most of the spar/cable interface failed (from ~20 to 75 deg approx.)
 - The rib/cable interface fails on both sides (completely on the side in tension)
- Failure propagates slowly from the outer edge, then suddenly propagates at around 12 kA
 - Impossible to say if this would be one or multiple events in a real magnet
 - This is quite close to where most CCT5 quenches were... (more later)

Powering - Stresses

- Does the stress distribution change because of the interface failure?
- Yes, higher stresses neglecting the corner spikes:
 - Radial: 100 MPa vs ~60 MPa
 - Azim.: 90 MPa vs 70 MPa
- The CZM model shows significant stress gradients
- Note: stresses on an elastoplastic model are not 'what we are used to' and should not be compared with the empirical limit of 150/200 MPa.


Bonded

CZM


Quench Simulation

- Can we correlate the crack propagation to energy releases?
 - Crack energy released should be related (proportional) to the heat released (minus elastic waves...)
 - Difficult to say how much heat goes trough the conductor and how much trough the mandrel
 - Add temperature measurements in the future? Challenging at cryogenic temperature
- A couple of **simplified approaches**:
 - 1. Derivative of damage vs time proportional to the released energy?
 - Compute the local temperature margin
 - Compute the contact element energy change
 - Assume that the change in temperature is proportional (ok this would have been better with the enthalpy margin)
 - 2. Event magnitude approach
 - The energy released by the crack is propagating to every location in the magnet (shocks?)
 - The limit should not be constant but decrease with the margin...
- This study is **only qualitative**, and useful for **comparison** purposes



- CCT5 **training** curve comparison (threshold calibrated). Results suggest that the 'event quench' mechanism might be predominant. Notes:
 - I am assuming that these events cause quenches, but this result does not prove it
 - We should **compare** the 'crack propagation currents' with **measured AE events**
 - Quenches could be distributed along the **length** we need a **3D** model!
 - Difficult to say if one 'quench' does not represent 'multiple quenches' in reality
- Prestress model: apply ~250 MPa of azimuthal stress on the shell
 - Interface is still cracking, but the propagation is slower, and the released energy is below the threshold (no quenches...)

Scaling to 3D

- Can we run a 3D model of the whole magnet with cohesive elements?
 - Unreasonable, and parallel computation (clusters) would not help a lot (many time steps)
- We need to 'divide' (et impera...) the problem. Possible approaches:
 - 1. **Submodel** rough simulation of the whole assembly and refined analysis of the region of interest
 - 2. Superelements attach equivalent stiffness around the region of interest
 - Not clear how both these approaches would be during **powering**
 - 3. Single cable along the length with **cut-boundary** conditions (periodic/superel.)
 - Concept similar to Brower's CCT slice model

• Interface strength: measurements and models

CCT debonding model

Conclusion

. DEPARTMENT OF

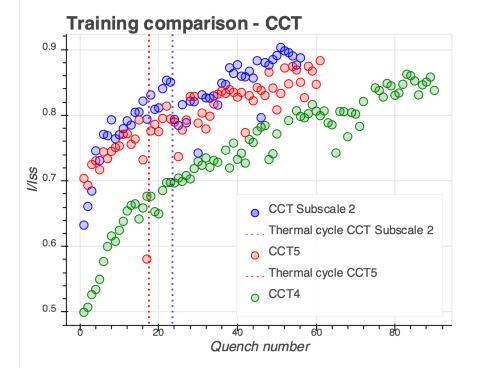
Office of

Science

G. Vallone

Conclusion

- Key points:
 - We developed capabilities to simulate mixed-mode debonding of superconducting magnets interfaces and applied it to a CCT model
 - Results suggest that:
 - Conductor **stresses change** because of the interface failure
 - Debonding might cause quenches via the release of elastic waves and not via local heat generation
 - Applying some **prestress** to CCT magnets could reduce training
- <u>Future plans:</u>
 - Updated plan for interface properties **measurements**
 - Comparative studies (2D model):
 - Stiffer spar study (Is the debonding due to the deformability (bending) or to the applied stress?)
 - Thermal/powering cycles effect on interfaces
 - Different epoxy properties... and more
 - Apply this modeling strategy to the BOX samples developed at PSI
 - 3D model


• Questions?

G. Vallone

G. Vallone

03/05/2021

25