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Uncertainties in heavy-
ion collider results



lTypical example in HI

27.4 pb (5.02 TeV pp) + 404 ub™' (5.02 TeV PbPb)
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Statistical Uncertainty

Usually there is a “catch-all” with little information

We don't have too much beyond these error bands
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Precision Is the key

 [he measurements are only as useful as the
uncertainties

 Depending on the target precision (
), the
way we report things can make a big difference

* Importance growing as we collect more data




How to do better?

* Not an exhaustive list



Correlations
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Agreement depends on
uncertainty correlation

* Fully Correlated: 10
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Correlation is important!

e Non-correlated: 20

e Anti-correlated: >20

Correlation and direction of the correlation
are very important information




Shape of the uncertainties

What does this really mean in Hl measurements?

N=il.0 270.1 (sys)




Shape of the uncertainties

What does this really mean in Hl measurements?

N=il.0 270.1 (sys)
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Shape of the uncertainties

* There is a lot of ambiguities in what we mean by “width”
from measurement to measurement

e Usually it is a combined quantity from ~a dozen ditferent
systematic sources

» Each systematic source may not be Gaussian
themselves — cross talk opportunity

e Contracting all these information into just one number
forces people to make assumptions (Gaussian? Log-
normal? Poisson? ...)

e |t's very important in comparisons (Exp: 1.0 £ 0.1, Th: 1.5)
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~actoring uncertainties

* |t would be beneficial to factor out uncertainties that
are not unigue to certain measurements and report

them separately

* For example the Taa and luminosity that are
already ~standard to factor out

 One can go one step further and think about
things like uncertainty on |et energy correction
from a given experiment

e Allows correlation across measurements

10




Examples from pp



Example: RIggs

 Recent ATLAS & CMS measurement as an example
* Classity different Higgs events # [ e [ e
based on event content s o N e
 Measure the contributions
from production modes =
 Then we can go on to fit for different BSM couplings
* For example Wilson coefficients for d=6 operators

Eur. Phys. J. C 80 (2020) 957, CMS-HIG-19-001 12



Example: HIggs
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Example: HIggs

m :I T T | I'TTT1 | IIIIIIII | I'TTT | T T | I'TTT1 | T T | T T I

I - + Observed best-fit

O 5 ATLAS — Observed 95% CL

! - H - ZZ* — 4 SM .
HHTB B l] 4 :— Vs=13 TeV, 139 fb—1 SM expected 95% CL_:
ity — Best-fit p-value: 0.88 .
lj 3F -
or ]

1E ]

0F + -

= =

_oF =

_3 :I 1 1 1 | | | | | | | | | 1 11 1| | | | | | | | | | | | 1 | I:

5 4 -3 -2 10 1 2 :(3:HW HHTVVUWZJ
V\/
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Example: RIggs again

Measure HZ*Z,,, HZ**Z,,, contributions from angular
correlations in 4| events (on shell + off shell)
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Phys. Rev. D 99 (2019) 112003 16




Example: RIggs again

Measure HZ*Z .. HZ**' /... contributions from angular
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Another example: jet grooming

 Measure spectra for different (soft drop) grooming
settings for anti-kt jets with R = 0.8 in pp

e Zo, R, p (=21In(m,/pr))
« Soft drop settings: zot = 0.1, = 0,1,2

e [rack-based vs calorimeter-based measurements

Phys. Rev. D 101 (2020) 052007 17



Jet grooming

Ratio to Central

ATLAS Simulation
Vs=13TeV, 32.9 fb
Track-based, a\nti—kl R=0.8
Soft Drop,z_ =0.1,=0
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summary



summary

e Uncertainty == usefulness of the data

* The better we report our uncertainties, the better our results can be
used

e Correlation of uncertainties
e Shape of the uncertainties

e Different sources

« Covariance matrix is a good start, but still forces people to make
assumptions further away

e TJail is always important
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Backup Slides Ahead






Example: Higgs back in Run 1

Measure HZVZ,, HZ*Z,, HZ'*Z,,, contributions from
angular correlations in 4| events
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How compatible”?

CMS Preliminary VSyy = 5-02 TeV, PbPb 404 pb™, pp 27.4 pb™
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