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Luminosity

❖ Luminosity formula (ignoring crossing angle)

✤ note: all parameters are for the ion ring!
❖ So what happens to the electrons…

✤ …they can get whacked if Ni•Ei >> Ne•Ee 
- some factor >1 is ok for ring-ring due to radiation damping

- much larger and the electrons limit luminosity.
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Ring-Ring vs Ring-Linac(ERL)

❖ Ions in storage ring
✤ tune shift limited to 0.005 ≤ ξi ≤ 0.015 
✤ Tevatron, LHC, RHIC, …

❖ Ring-Ring
✤ taylor beam intensity and β ratio to make ξe /ξi <10(maybe)
- 0.1 ≥ ξe ≥ 0.05 has been achieved (CESR, LEP, KEKB, PEP-II)

- many bunches (fc), small β*

- high electron-beam current 

❖ Ring-Linac
✤ electron “tune shift” (∝ disruption D) no longer as limiting
- electron beam intensity limited by linac(ERL) and gun.

❖ High circulating e– current vs ERL and high-intensity gun. 

3



U. Wienands
EICUG, UCBerkeley, 6-Jan-2016

Ring-Linac (ERL)

❖ Example: eRHIC: Ion ring parameters given or anticipated 
(eRHIC DR Dec. 2014, 250 GeV):

✤ Ni: 3x1011, ξi: 0.004, β*: 5 cm, fc: 9.4 MHz (100 bunches in RHIC)
✤ => if we have 7x109 e–/bunch, same β*
- 0.7 nmrad emittance (γε ≈ 23 µm-rad @ 15.9 GeV), σe = 4 mm

- ξe: 2.8 (D ≈ 14)

- 7x109 e–/bunch at 9.4 MHz = 10 mA, 159 MW @ 15.9 GeV. Needs ERL

❖ L ≈ 4x1033 /cm2/s
❖ Per eq. on slide 1, increasing L implies 

✤ increase Ni, ξi, fc; lower β*
❖ L scales directly with ion energy
❖ Challenges: ERL at high energy & current & sr energy loss

source for 10 mA (cw) of pol. e– 
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eRHIC Ring-ERL
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LHeC

❖ L=1034 /cm2/s for e-p, 7 TeV protons
✤ ≈ 1011 p on 109 e– per bunch, fc = 40 MHz
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Paul Newman 
Birmingham University 

•  Lepton-hadron collider 

based on the high lumi LHC 

•  Can we add ep and eA  
collisions to the existing LHC  

pp, AA and pA programme? 

P. Newman
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Ring-Ring

❖ Example: JLEIC
✤ Ni: 4.2x109, ξi: 0.014, β*: 2y/10x cm, fc: 750 MHz
✤ Ne: 2.5x1010/bunch; 3 A total
- 5.7 nmrad emittance (γε ≈ 54 µm-rad)

- ξe: 0.03

- 5:1 aspect ratio x:y
✤ L = 5.6x1033

✤ So the bunch-charge ratio is inverted c.f. Ring-Linac
- mitigates the beam-beam effect on the electrons

- and fc gains by a factor 75

✤ Flat-ish beams
❖ Challenges: 3 A e– beam current; 1 cm long ion bunches 

at 0.5 A ion beam current
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JLEIC Layout
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Design Challenges

❖ FFAG-ERL 
✤ Unique combination
✤ tests planned at Cornell (FFAG-ERL) and maybe CERN (ERL)

❖ Next-generation cooling schemes
✤ Coherent electron Cooling
✤ Bunched-beam electron cooling

❖ Spin manipulation
✤ Figure-8 rings

❖ Varying speed of not-fully-relativistic ions 
❖ Highly asymmetric interaction regions
❖ High ion-beam intensity with short bunches
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Multi-pass test-ERL at Cornell – an eRHIC prototype
Uses existing 6 MeV low-emittance and high-current injector and 70 MeV 
CW SRF Linac
ERL with single four-pass recirculation arc with x4 momentum range
Permanent magnets used for recirculation arc
Adiabatic transition from curved to straight sections
Test of spreader/combiner beam lines
High current will be used to test HOM damping of eRHIC accelerating cavity

T. Roser
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❖ 150 MeV/linac, 3 passes, 2x109 e–/bunch
✤ maximum-scope configuration
✤ could have its own physics program.
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CERN ERL Test Facility (proposed)
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High-Current Gun Development (BNL “Gatling” Gun)
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(112 MHz)

3rd harmonic 
cavity Ballistic 

compression
Booster 
linac
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2 to 20 Photo-cathodes 
arranged in a ring

16 cm

Fixed bend magnets

I. Ben-Zvi
V. Litvinenko
J. Skaritka

2-cathode test @ Stangenes
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Cooling

❖ Cooling is essential to reach highest luminosities.
✤ Stochastic cooling rate:

✤ Coherent electron cooling (CeC) to increase W
✤ Stochastic bunched-beam cooling to counteract IBS
✤ Bunched-beam electron cooling

❖ Need experimental verification of anticipated 
performance parameters
✤ CeC experiment at RHIC
✤ Bunched-beam electron cooling experiment at IMP
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❖ Stochastic cooling at extreme bandwidth (1013 Hz).
❖ Pickup: Modulate an e– beam
❖ Amplifier: Amplify modulation in an FEL

Provide R56 for path length difference with δE/E

❖ Kicker: Kick in longitudinal plane to reduce δE/E

✤ transverse cooling by emittance exchange, modified kicker
❖ ≈ 2 O-magnitude increase in cooling rate vs stochastic or e– cooling
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Coherent Electron Cooling (Derbenev/Litvinenko)
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Coherent Electron Cooling Experiment (RHIC)
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DC Cooler and Bunched Beam Cooler
MEIC	
  needs	
  two	
  electron	
  coolers

• DC	
  cooler	
  	
  (within	
  state-­‐of-­‐art,	
  a	
  2	
  MeV	
  cooler	
  is	
  in	
  commissioning	
  at	
  COSY)
• Bunched	
  beam	
  cooler	
  (Needs	
  R&D):
• ERL	
  single	
  pass	
  cooler	
  (Ie	
  =	
  0.2	
  A,	
  MEIC	
  baseline	
  design,	
  no	
  circulator	
  ring)

• ERL	
  circulator	
  cooler	
  (Ie	
  =	
  1.5	
  A,	
  lower	
  emittance,	
  higher	
  luminosity)

Challenges	
  of	
  the	
  high	
  energy	
  bunched	
  cooler	
  
• Cooling	
  by	
  a	
  bunched	
  electron	
  beam
• Making	
  and	
  transport	
  of	
  high	
  current/intensity	
  magnetized	
  electron	
  beam
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Bunched-e– Cooling Expt. at IMP (Lanzhou)
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Polarization

❖ RHIC has polarized protons up to 250 GeV
✤ Developing polarized 3He source (BNL-MIT)

❖ ERL relies on polarized electrons from gun
✤ no resonant depolarization in the few-pass ERL.
✤ spin rotators for the experiments??

❖ JLEIC proposes an innovative Figure-8 scheme
✤ overall spin tune ≈ 0 
✤ only a very small (solenoidal) field required to establish the 

stable spin direction.
✤ need spin rotators to prepare helicity states at the detector(s).
✤ works for ions as well, even d.

❖ JLEIC takes advantage of extant polarization capability of 
CEBAF
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RHIC Snakes and Spin Rotators
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48 helical dipoles, 2.4 m ea., 1…4 T 
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Figure-8 Polarization control
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Energy Changes

❖ Ions are not fully relativistic => frequency changes with 
energy and species of the ion beam
✤ ideally, change hadron pathlength by sufficient amount
- impractical as it requires large-scale moves

✤ combine path-length changes with changes in harmonic number
❖ eRHIC proposes 16 cm pathlength change in the ion ring

✤ range of radial steering available
✤ rest with harmonic changes in ERL

❖ JLEIC needs a wider range: ± 33 cm with harmonic change
✤ coherent beam-beam instability is a potential issue in ring-ring
- lowest order can probably be controlled by feedback, but limits ξ ?

✤ Gaps in beam -> will precess against each other
- needs study

✤ Moving focus scheme would avoid chicanes…
21
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JLEIC Synchronizations (possible schemes)
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IR design and MDI

❖ Hard X-rays from e– are a challenge
✤ difficult to mask, keep them away from detector!
✤ B-Factories have shown that s.r. can be managed.

❖ 0-degree requirement for detector a real challenge
✤ optics wants to keep L* as short as possible
- Is it possible to share innermost quad (“Q0”)?? 

✤ ERL may have a somewhat easier time here
- lower electron-beam current

- but beam is round; need to watch radiation in the vertical plane also.
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JLEIC IR Layout
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eRHIC IR Layout
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High Beam Current & Short Bunches

❖ Short bunches => rich in high-frequency content
✤ loss factor k tends to go up with f somepower

✤ in vacuum, even small wattage can be issue
✤ any gap has potential for arcing

❖ IR with irregular cross section & crotches
✤ trapped modes possible: impedance, power

❖ cryogenic heat load can be significant
✤ same current as LHC (0.5 A) but shorter bunches (LHC: 8 cm)
- √8 times the heat load for JLEIC??
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Effect of High Current (2 A) in Short Bunches (1 cm)
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e-Cloud Effect

❖ Positively charged beams attract electrons that form a 
cloud about the beam and cause emittance growth
✤ PEP-II, KEKB, LHC all had or have to deal with it
✤ solenoidal field effective in drift regions, not possible in dipoles
✤ controllable by gaps in beam; at expense of total # of bunches

❖ Mitigations include solenoidal fields (in drift regions) 
and gaps in the beam (problem if different harmonic ?)
✤ low-emission vacuum chamber important (TiN or NEG coat)
✤ antechambers help in e+ rings, not clear in ion rings.
✤ scrubbing will reduce effect, at expense of time.

❖ Dependent on bunch spacing, length and patterns.
✤ dedicated diagnostics may be worthwhile investment.
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e-Cloud in RHIC
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Dynamic pressure in the 12 Blue warm straight sections (top), measured by a single 
gauge in each, while proton beam with 108 ns bunch spacing is filled (bottom). With 
completely NEG coated pipes, the pressure in 3 sections in 2005, and 5 sections in 
2006, remained at 10-11 Torr.    

Cure: baking to 200C,  NEG(non-evaporable getter) coating(very effective), 
scrubbing(take long time, but effective) 

H. Huang
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e-Cloud in PEP-II LER
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Luminosity droop along bunch trains before solenoids 
(8.4 ns bunch spacing)

anti-e-cloud solenoids
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Beam Life Time

❖ ion beam typically has hours of lifetime (small beam-
beam)

❖ in Linac-Ring, lifetime concept not applicable to electron 
beam

❖ in Ring-Ring, electron beam lifetime tends to be short
✤ continuous injection built-in feature
- B-Factories proved practicality and operational benefits

- need sufficient aperture and small enough injecting emittance to control 
background

- expensive if injector chain is new (throughput, programmability)
✤ side-benefits: 
- balance bunch lifetimes (to a degree)

- compensate for residual depolarization in ring as well.

31



U. Wienands
EICUG, UCBerkeley, 6-Jan-2016

Summary

❖ Electron-Ion Colliders are not “trivial” machines

❖ Some qualitatively new challenges and approaches
✤ Ion Cooling at high energy
✤ Figure-8 scheme for polarization control
✤ Path-length change due to variable energy of ions

❖ …and a number of quantitatively new ones
✤ Highly asymmetric beam-beam interaction (HERA, B-Fac)
✤ e-Cloud effect in the ion beam (B-Fac, RHIC, LHC)
✤ s.r. management of the e– beam (B-Fac, LEP)
✤ Complex IR design incl. s.r. management (HERA, B-Fac)
✤ Polarization (of both beams) (HERA, RHIC, LEP)
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Summary cont’d

❖ Some challenges specific to the fundamental design choice
✤ Ring-Ring
- very high s.r. power and electron-beam current

- very low β* and very short bunches of both beams

- harmonic difference (or not?) due to path length change
✤ Linac-Ring
- High-current (10 mA or more) ERL at high energy and high s.r. loss

- High average current polarized e– gun.

❖ Significant overlap in R&D
✤ Cooling
✤ Collective effects, esp. e-Cloud
✤ Polarization and spin rotators

❖ Innovative work is being pursued
✤ A number of collaborations established to tackle the issues
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