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Luminosity

+¢* Luminosity formula (ignoring crossing angle)

I = NiJ.Y; (gx,iﬁy,i T ﬁx,iéy,i)
2r,B..B,,

* note: all parameters are for the ion ring!
+¢* So what happens to the electrons...

g — reNiﬁy,eéy,iyi
o }/eﬂy,irpNe

 ...they can get whacked if N*E; >> N.°E,

- some factor >1 is ok for ring-ring due to radiation damping
= much larger and the electrons limit luminosity.



Ring-Ring vs Ring-Linac(ERL)
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+* lons in storage ring
¢ tune shift limited to 0.005 <& <0.015
¢ Tevatron, LHC, RHIC, ...
% Ring-Ring
** taylor beam intensity and § ratio to make &. /& <10(maybe)

= 0.1 2 &2 0.05 has been achieved (CESR, LEP, KEKB, PEP-II)

- many bunches (f.), small g*
- high electron-beam current

% Ring-Linac

* electron “tune shift” (< disruption D) no longer as limiting
- electron beam intensity limited by linac(ERL) and gun.

+¢* High circulating e~ current vs ERL and high-intensity gun.



Ring-Linac (ERL)
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+2* Example: eRHIC: lon ring parameters given or anticipated
(eRHIC DR Dec. 2014, 250 GeV):

% Ni: 3x10", & 0.004, 5*: 5 cm, f.: 9.4 MHz (100 bunches in RHIC)

% => if we have 7x10° e-/bunch, same *

= 0.7 nmrad emittance (ye = 23 ym-rad @ 15.9 GeV), ge =4 mm
= £e: 2.8 (D =14)
- 7x10° e7/bunch at 9.4 MHz = 10 mA, 159 MW @ 15.9 GeV. Needs ERL

% I = 4x1033 /cm?/s

+** Per eq. on slide 1, increasing L implies

< increase N, &, f.; lower *
% L scales directly with ion energy

+¢* Challenges: ERL at high energy & current & sr energy loss
source for 10 mA (cw) of pol. e~




eRHIC Ring-ERL
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LHeC

% L=1034/cm?/s for e-p, 7 TeV protons P. Newman

= 10" p on 10° e~ per bunch, f. =40 MHz
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Ring-Ring
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% Example: JLEIC

% Ni: 4.2x109, £: 0.014, 8*: 2,/10, cm, f.: 750 MHz
* Ne: 2.5x101%bunch; 3 A total

- 5.7 nmrad emittance (ye = 54 pm-rad)
— gei 0.03
- 5:1 aspect ratio x:y

L =56x10%

* So the bunch-charge ratio is inverted c.f. Ring-Linac
- mitigates the beam-beam effect on the electrons

- and f. gains by a factor 75
“* Flat-ish beams

+¢* Challenges: 3 A e~ beam current; 1 cm long ion bunches
at 0.5 A ion beam current




JLEIC Layout
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Design Challenges
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+* FFAG-ERL

“» Unique combination

** tests planned at Cornell (FFAG-ERL) and maybe CERN (ERL)
% Next-generation cooling schemes

» Coherent electron Cooling
» Bunched-beam electron cooling

+% Spin manipulation
* Figure-8 rings
% Varying speed of not-fully-relativistic ions
% Highly asymmetric interaction regions
+¢* High ion-beam intensity with short bunches



10

Multi-pass test-ERL at Cornell — an eRHIC prototype

o Uses existing 6 MeV low-emittance and high-current injector and 70 MeV
CW SRF Linac

o ERL with single four-pass recirculation arc with x4 momentum range

e Permanent magnets used for recirculation arc

o Adiabatic transition from curved to straight sections

o Test of spreader/combiner beam lines

e High current will be used to test HOM damping of eRHIC accelerating cavity

T. Roser|
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CERN ERL Test Facility (proposed)

+* 150 MeV/linac, 3 passes, 2x10° e~/bunch
* maximum-scope configuration
¢ could have its own physics program.
P. Newman |

ERL Test Facility:
- Test centre for accelerator development, LHeC prototype

- Most ambitious design (2 x 150 MeV linacs, 3 passes = 900 MeV)
has significant physics potential of its own (10%° cm2 s fixed
target) ... EW parameters, proton
radius, photonuclear physics,
dark photons ...

- Conceptual Design Report
by end 2015




High-Current Gun Development (BNL “Gatling” Gun)
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Cooling

+* Cooling is essential to reach highest luminosities.

¢ Stochastic cooling rate:
e W 1

C;l‘ ~ N (28 - 82 (M T U)); W=bandwidth, g=gain o< E

* Coherent electron cooling (CeC) to increase W
 Stochastic bunched-beam cooling to counteract IBS
* Bunched-beam electron cooling

+* Need experimental verification of anticipated
performance parameters

»» CeC experiment at RHIC
* Bunched-beam electron cooling experiment at IMP




Coherent Electron Cooling (Derbenev/Litvinenko)

% Stochastic cooling at extreme bandwidth (103 Hz).
% Pickup: Modulate an e~ beam
«%» Amplifier: Amplify modulation in an FEL

Provide Rse for path length difference with oee

2 Kicker: Kick in longitudinal plane to reduce dge

¢ transverse cooling by emittance exchange, modified kicker
+» = 2 O-magnitude increase in cooling rate vs stochastic or e~ cooling

Dispersion section ,*
/
Hadrons Modulator (for hadrons) /-~
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Coherent Electron Cooling Experiment (RHIC)
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V.N. Litvinenko, I. Pinayev, G. Wang........ccccc......

o *PoP experiment in RHIC by the collaboration: BNL, Tech-X Co.,
—@ A-Fedotov Budker INP, Jefferson Lab, , Daresbury Lab

*Commissioning: 2014-2015

*Aim : to demonstrate longitudinal cooling of 40 GeV/u Au ion
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N due to few seconds of the cooling
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DC Cooler and Bunched Beam Cooler

MEIC needs two electron coolers H. Zhang|

* DC cooler (within state-of-art, a 2 MeV cooler is in commissioning at COSY)
* Bunched beam cooler (Needs R&D):
 ERL single pass cooler (I, = 0.2 A, MEIC baseline design, no circulator ring)

 ERL circulator cooler (I, = 1.5 A, lower emittance, higher luminosity)

Challenges of the high energy bunched cooler
* Cooling by a bunched electron beam
* Making and transport of high current/intensity magnetized electron beam

Cooling section Cooling section
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Bunched-e~ Cooling Expt. at IMP (Lanzhou)
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IMP Bunched Beam Electron Cooling Experiment Parameters
Kinetic energy 7 30 MeV/u
particle y 1.007 1.032
16 particle 3 0.121 0.247
Geometric
, 5 5 umrad
emittance Xx/y
dp/p 4.00E-04 |4.00E-04
Number of
, 5.E+08 5.E+08
particles
e Kinetic energy 3.812 16.339 | keV
Radius 2.5 2.5 cm
Average current 30 70 mA
Temperature Xx/y 0.05 0.1 eV




Polarization
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+¢* RHIC has polarized protons up to 250 GeV
% Developing polarized 3He source (BNL-MIT)
+¢* ERL relies on polarized electrons from gun
¢ no resonant depolarization in the few-pass ERL.
¢ spin rotators for the experiments??
+* JLEIC proposes an innovative Figure-8 scheme
» overall spin tune =0
 only a very small (solenoidal) field required to establish the
stable spin direction.

* need spin rotators to prepare helicity states at the detector(s).
¢ works for ions as well, even d.

+2» JLEIC takes advantage of extant polarization capability of
CEBAF



RHIC Snakes and Spin Rotators
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Figure-8 Polarization control
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Energy Changes

+* lons are not fully relativistic => frequency changes with
energy and species of the ion beam

¢ ideally, change hadron pathlength by sufficient amount
- impractical as it requires large-scale moves
¢ combine path-length changes with changes in harmonic number

+2* eRHIC proposes 16 cm pathlength change in the ion ring

* range of radial steering available
 rest with harmonic changes in ERL

+** JLEIC needs a wider range: £ 33 cm with harmonic change

¢ coherent beam-beam instability is a potential issue in ring-ring
- lowest order can probably be controlled by feedback, but limits & ?
» Gaps in beam -> will precess against each other

- needs study
*» Moving focus scheme would avoid chicanes...



JLEIC Synchronizations (possible schemes)
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IR design and MDI

¢ Hard X-rays from e~ are a challenge

¢ difficult to mask, keep them away from detector!
 B-Factories have shown that s.r. can be managed.

+» 0-degree requirement for detector a real challenge

» optics wants to keep L* as short as possible
- Is it possible to share innermost quad (“Qo”)??
“* ERL may have a somewhat easier time here

- lower electron-beam current
- but beam is round; need to watch radiation in the vertical plane also.



JLEIC IR Layout
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eRHIC IR Layout
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High Beam Current & Short Bunches
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+¢* Short bunches => rich in high-frequency content

“** loss factor k tends to go up with f somepower

¢ in vacuum, even small wattage can be issue
 any gap has potential for arcing

% IR with irregular cross section & crotches
» trapped modes possible: impedance, power
¢ cryogenic heat load can be significant

* same current as LHC (0.5 A) but shorter bunches (LHC: 8 cm)
— /8 times the heat load for JLEIC??



Effect of High Current (2 A) in Short Bunches (1 cm)
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e-Cloud Effect
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+* Positively charged beams attract electrons that form a
cloud about the beam and cause emittance growth

“* PEP-Il, KEKB, LHC all had or have to deal with it
¢ solenoidal field effective in drift regions, not possible in dipoles
¢ controllable by gaps in beam; at expense of total # of bunches

+* Mitigations include solenoidal fields (in drift regions)
and gaps in the beam (problem if different harmonic ?)

* low-emission vacuum chamber important (TiN or NEG coat)
¢ antechambers help in e* rings, not clear in ion rings.
» scrubbing will reduce effect, at expense of time.

+¢* Dependent on bunch spacing, length and patterns.

 dedicated diagnostics may be worthwhile investment.



e-Cloud in RHIC
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Dynamic pressure in the 12 Blue warm straight sections (top), measured by a single

gauge in each, while proton beam with 108 ns bunch spacing is filled (bottom). With
completely NEG coated pipes, the pressure in 3 sections in 2005, and 5 sections in
2006, remained at 10-!! Torr.

Cure: baking to 200C, NEG(non-evaporable getter) coating(very effective),
scrubbing(take long time, but effective)



e-Cloud in PEP-Il LER

Luminosity droop along bunch trains before solenoids
(8.4 ns bunch spacing)

anti-e-cloud solenoids




Beam Life Time

+* ion beam typically has hours of lifetime (small beam-
beam)

+* in Linac-Ring, lifetime concept not applicable to electron
beam

+* in Ring-Ring, electron beam lifetime tends to be short

¢ continuous injection built-in feature
- B-Factories proved practicality and operational benefits
- need sufficient aperture and small enough injecting emittance to control
background
- expensive if injector chain is new (throughput, programmability)

¢ side-benefits:

- balance bunch lifetimes (to a degree)
- compensate for residual depolarization in ring as well.



Summary
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s Electron-lon Colliders are not “trivial” machines

+¢* Some qualitatively new challenges and approaches

“* lon Cooling at high energy
 Figure-8 scheme for polarization control
“ Path-length change due to variable energy of ions

+» ...and a number of quantitatively new ones

* Highly asymmetric beam-beam interaction (HERA, B-Fac)
 e-Cloud effect in the ion beam (B-Fac, RHIC, LHC)

“* s.r. management of the e~ beam (B-Fac, LEP)

“» Complex IR design incl. s.r. management (HERA, B-Fac)
 Polarization (of both beams) (HERA, RHIC, LEP)



Summary cont’d
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+* Some challenges specific to the fundamental design choice
“* Ring-Ring
- very high s.r. power and electron-beam current

- very low * and very short bunches of both beams
- harmonic difference (or not?) due to path length change

* Linac-Ring
-= High-current (10 mA or more) ERL at high energy and high s.r. loss
- High average current polarized e~ gun.

+% Significant overlap in R&D
» Cooling
 Collective effects, esp. e-Cloud
» Polarization and spin rotators
% Innovative work is being pursued

¢ A number of collaborations established to tackle the issues



