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| Overview |

Large-x Evolution (CSS)
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| Overview |

Large-x Evolution (CSS)
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Initial Conditions: Classical Gluon Fields |
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* A quark TMD is a matrix element of quark fields, dressed by a staple-
shaped gauge link.
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* A quark TMD is a matrix element of quark fields, dressed by a staple-
shaped gauge link.

e At high density, the IR gauge fields are screened by rescattering.
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| Initial Conditions: Classical Gluon Fields |
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* A quark TMD is a matrix element of quark fields, dressed by a staple-
shaped gauge link.
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e At high density, the IR gauge fields are screened by rescattering.

e Leads to a “quasi-classical factorization” in which the gauge link can be
calculated perturbatively (classical Yang-Mills fields)
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| Quantum Evolution in the Light-Cone Gauge |
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e Quantum Evolution: logarithmic enhancement of QCD radiation

DGLAP: a,In ﬁ—j ~ 1 BFKL: o In -5 ~ 1
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| Quantum Evolution in the Light-Cone Gauge |
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e Quantum Evolution: logarithmic enhancement of QCD radiation

DGLAP: a,In %j ~ 1 BFKL: o In -5 ~ 1

* In high-energy kinematics, the light-cone gauge is especially convenient.
e Suppress eikonal radiation from & moving target if A~ = 0.

* Evolution takes place completely within the & moving projectile.
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| Quantum Evolution in the Light-Cone Gauge |
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e Quantum Evolution: logarithmic enhancement of QCD radiation

DGLAP: a,In %j ~ 1 BFKL: o In -5 ~ 1

* In high-energy kinematics, the light-cone gauge is especially convenient.
e Suppress eikonal radiation from & moving target if A~ = 0.

* Evolution takes place completely within the & moving projectile.

e Transverse part of the TMD gauge link vanishes in this gauge.
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| Evolution in Q° at Large x |

(h(p,5)] p(0) U0, 7] Pa(r) |R(p,5))

e At large x, SIDIS proceeds by quark “knockout” s~ Q%> k2
e TMD extracts a quark collinear to the target = Q;Q ~ O(1)
s+

 Does not radiate in the A~ = 0 light-cone gauge.
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| Evolution in Q° at Large x |

(h(p, S)| Y(0)U[0, 7]|tha(r) [A(p, S))

e At large x, SIDIS proceeds by quark “knockout” s~ Q2> K2
e TMD extracts a quark collinear to the target = f;z ~ O(1)
 Does not radiate in the A~ = 0 light-cone gauge.

* Only the © moving quark can produce logarithmic radiation. N2 0?

Qg In~ =5
* Long lifetime and phase space for final-state radiation. i :
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| Evolution in Q° at Large x |

(h(p, S)| Y(0)U[0, 7]|tha(r) [A(p, S))

e At large x, SIDIS proceeds by quark “knockout” s~ Q2> K2
e TMD extracts a quark collinear to the target = fc; ~ O(1)
 Does not radiate in the A~ = 0 light-cone gauge.

* Only the © moving quark can produce logarithmic radiation. N2 0?

Qg In~ =5
* Long lifetime and phase space for final-state radiation. i :

* In LC gauge, TMD evolution occurs exclusively within the gauge link.
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| Large x: CSS Evolution |

‘ Gauge Link ‘ — ‘Dipole ScatteringAmpIitude‘
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| Large x: CSS Evolution |

‘ Gauge Link ‘ — ‘Dipole ScatteringAmpIitude‘

. D i . LS[(}O_,I)_](QZ)
ipole evolution well known: atn Q2 (rr,br)
e BFKL “virtual” emissions. = —Q [ln(QQT?p)] S([:fo_,;b;](QQ)
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| Large x: CSS Evolution |

‘ Gauge Link ‘ — ‘Dipole ScatteringAmpIitude‘

. D i . LS[(}O ,b ](QZ)
ipole evolution well known: atn Q2 (rr,br)
e BFKL “virtual” emissions. = —Q [ln(QQT?p)] S([jfo_,;b;](QQ)
oo ,0 Q2 |
e Leads to Sudakov double- S([TT,,;i)](Q% B i d;ﬂl 5
logarithms (CSS evolution) gl b g2y i / 2 ")
(rzibr) A0 @ _
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| Large x: CSS Evolution |

‘ Gauge Link ‘ — ‘Dipole ScatteringAmpIitude‘

D. . . 0 S[OO 7b ] 2
* Dipole evolution well known: B GZ O (v bp) (@)
e BFKL “virtual” emissions. = —Q, [ID(Q )] (f; bi)](QQ)
* | eads to Sudakov double- 5([?;:55](622) i QQd;ﬂ ) 5
logarithms (CSS evolution) gl v T o2y ¥ _QS/FIH(M T)
(rp by (@0) 02
o N turbative IR physi
onperturbative IR physics $4(Q%) ~ oV (Q2) ® (TT bT) Ty

stays regulated by high density!
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| TMD’s at Small x |
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e At small x, the target is contracted to a “shockwave.” s> Q% > ki
* Dominated by dipole splitting o Q° <1
S

e Calculate in Light Front Perturbation Theory
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| TMD’s at Small x |
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| 5 -
Ax~ oc1/pt ()
e At small x, the target is contracted to a “shockwave.” s> Q> k4
* Dominated by dipole splitting o Q° <1
S
e Calculate in Light Front Perturbation Theory
e TMD operator creates an antiquark rather than Quark transport
annihilates a quark. is x-suppressed!
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| TMD’s at Small x |
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| 5 -
Ax~ oc1/pt ()
e At small x, the target is contracted to a “shockwave.” s> Q> k4
* Dominated by dipole splitting o Q° <1
S
e Calculate in Light Front Perturbation Theory
e TMD operator creates an antiquark rather than Quark transport
annihilates a quark. is x-suppressed!

e Gauge link is now fully infinite over entire target.

Sy = ]\1,0 Tr [VwVJ]

e Infinite dipoles from quark / antiquark Wilson lines.

M. Sievert TMD’s at High Density: Quantum Evolution 7119




Unpolarized Quarks: BK / BFKL Evolution |

e Evolution now occurs in the both the gauge link (quark Wilson line)
and the matrix element (antiquark Wilson line).
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| Unpolarized Quarks: BK / BFKL Evolution |

o U
R - N
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e Evolution now occurs in the both the gauge link (quark Wilson line)
and the matrix element (antiquark Wilson line).

* Formulated as the dipole amplitude evolution.

Qg ln&

 Resums leading logarithms of energy.
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e Evolution now occurs in the both the gauge link (quark Wilson line)
and the matrix element (antiquark Wilson line).

* Formulated as the dipole amplitude evolution.

Qg ln&

 Resums leading logarithms of energy.

* Nonlinear rescattering leads to an operator hierarchy.
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| Unpolarized Quarks: BK / BFKL Evolution |

o U0,
D

0 _ = 2 z1—y1)’
31ns<533y>(5) — Qs /d Z(azL—(zL)Q(yZJ_)—yL)Q [<S$Z>(S) <Szy>(3) - <S$y>(3)]

e Evolution now occurs in the both the gauge link (quark Wilson line)
and the matrix element (antiquark Wilson line).

* Formulated as the dipole amplitude evolution.

Qg ln&

 Resums leading logarithms of energy.

* Nonlinear rescattering leads to an operator hierarchy.

Q%(x) ~ (2)"°

e Evolution closes in the large [V, limit (BK).
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| Polarization at Small x: A New Ballgame |

e At small x, the leading-order quark structure is spin independent.
e Small-x evolution: energy dependence of total cross-section.
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| Polarization at Small x: A New Ballgame |
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e At small x, the leading-order quark structure is spin independent.

e Small-x evolution: energy dependence of total cross-section.

* Quark polarization at small x is energy suppressed. [ja,. S 02C% 11
2k N. sk

e Longitudinal spin asymmetry T
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| Polarization at Small x: A New Ballgame |
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e At small x, the leading-order quark structure is spin independent.

e Small-x evolution: energy dependence of total cross-section.

* Quark polarization at small x is energy suppressed. [jas 5a2C3 1 1
. . . 2 2
| ongitudinal spin asymmetry Ak Ne skr

. . . .
Gluon exchange: leading-order is spin independent. iAo 20k 11
. . 2 | 2
e Sub-leading: Energy suppressed and polarized! d”k Ne s kp
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| The Polarized Dipole |

U0, r]
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e Generalize dipole DoF to include spin dependence.
e Each spin exchange is energy suppressed.

 One spin exchange + multiple unpolarized rescattering.
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| The Polarized Dipole |
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e Generalize dipole DoF to include spin dependence.
e Each spin exchange is energy suppressed.

 One spin exchange + multiple unpolarized rescattering.

e TMD Components:
e Gauge link (quark Wilson line) is unpolarized

Both can participate
in the evolution

e Matrix element (antiquark Wilson line) is polarized
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| The Polarized Dipole |

U0, r]
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e Generalize dipole DoF to include spin dependence.
e Each spin exchange is energy suppressed.

 One spin exchange + multiple unpolarized rescattering.

e TMD Components:
e Gauge link (quark Wilson line) is unpolarized

Both can participate
in the evolution

e Matrix element (antiquark Wilson line) is polarized

* Building block: the “Polarized Dipole Operator”
Gy = 2]1\,6 Tr [VxVJ (o) + Vy(a)Vaﬂ
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| Evolution: Transporting Spin to Small x |

* Polarized antiquark evolves by ¢ — q GG splitting.
e Soft quarl: helicity conservation

e Soft gluon: sub-eikonal vertex
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| Evolution: Transporting Spin to Small x |

* Polarized antiquark evolves by ¢ — q GG splitting.

e Soft quark: helicity conservation _
e Soft gluon: sub-eikonal vertex 1>z >> 2> > L

Q? < Fr o ko o

e Ordering: longitudinal and transverse
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| Evolution: Transporting Spin to Small x |

* Polarized antiquark evolves by ¢ — q GG splitting.

e Soft quark: helicity conservation

e Soft gluon: sub-eikonal vertex 1> 2 >> Rg 2> vt 2 Q—2
Q* < B « har
e Ordering: longitudinal and transverse
¢ Includes “infrared” part of phase space kiz > kap > kip 2
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| Evolution: Transporting Spin to Small x |

* Polarized antiquark evolves by ¢ — q GG splitting.

e Soft quark: helicity conservation _
e Soft gluon: sub-eikonal vertex 1>z >> 2> > L

Q? < Fr o ko o

e Ordering: longitudinal and transverse

2
¢ Includes “infrared” part of phase space kiz > kip > kir -

* Leads to double logarithms of energy

e Could it off-set the initial energy suppression?
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| Ladder Approximation |
i af / / i "%ib%& } 9999?9?‘) j 919101010101910101010191010101919101010101010101010101010)

A1 Ao A A9
00000 = 00000
a b a b
o o c c
A A
z z

e Ladder evolution: quark, gluon splitting w [a [az [ Cr 2Cr
* Neglect multiple rescattering 27 |z k7 \—N; 4N,
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| Ladder Approximation |
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e Ladder evolution: quark, gluon splitting w [a [az [ Cr 2Cr
* Neglect multiple rescattering 2 | =z k7 \—N; 4N,

.“\.

e Solve by Mellin transform L , ) 146
o (g = 0.3 Nc:Nf =3 HeIICIt.y° ™~ (@)
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| Ladder Approximation |
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e Ladder evolution: quark, gluon splitting w [a [az [ Cr 2Cr
* Neglect multiple rescattering 2 | =z k7 \—N; 4N,

* Solve by Mellin transform L s ) 146
e a, = 0.3 N, = Nf — 3 He|ICIt)'. ~ (@)
* Fast growth at small x! (Faster than BK...) 0.3
L . BK: | ~ (%)
e Large contribution to the proton spin? Q
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| The Plot Thickens: Non-Ladder Graphs |
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o Non.-ladder graphs’” can also generate double logs. k2> k2> k%Ti_f
* Arise from the IR sector
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| The Plot Thickens: Non-Ladder Graphs |
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222

2 2
k2 > k3p > k2

“Non-ladder graphs” can also generate double logs

e Arise from the IR sector.

* Quarks: quark and antiquark nonladder graphs cancel

Gay = 53 Tr [Va V(o) + Vy(o)V,]
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| The Plot Thickens: Non-Ladder Graphs |
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“Non-ladder graphs” can also generate double logs

e Arise from the IR sector.

* Quarks: quark and antiquark nonladder graphs cancel

Gay = 53 Tr [Va V(o) + Vy(o)V,]

* Gluons: permutations do NOT cancel.
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| The Plot Thickens: Non-Ladder Graphs |
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k2 > k3p > k2

“Non-ladder graphs” can also generate double logs

e Arise from the IR sector.

e Quarks: quark and antiquark nonladder graphs cancel

Tr [V VT( ) + Vy(a)Vaﬂ

Gy_ZN

* Gluons: permutations do NOT cancel.

e Ladder truncation is NOT a justifiable approximation!
13/ 19
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| A Tangled Mess |

e Non-ladder graphs can stack in
entangled ways which are still DLA

Y

* Polarization can “jump a rung”
of evolution and still be
transmitted to the target.

* Very difficult to resum.
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| A Tangled Mess |

e Non-ladder graphs can stack in
entangled ways which are still DLA

Y

* Polarization can “jump a rung”
of evolution and still be
transmitted to the target.

* Very difficult to resum.

e Even allows for eikonal, unpolarized
evolution in an intermediate step

e Transition to color-octet evolution
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| Polarized Dipole Evolution |

| adder:
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| Polarized Dipole Evolution |

| adder: Non-Ladder:

o T
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| Polarized Dipole Evolution |

| adder: Non-Ladder:

- EE R N R
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| The Large - N, Limit |

Y A

0 0 .
Fo2.21(2) So2(2) Soa(2)
Grolz) = ) T + i 0 + -l — = Gl
521<Z) G21(Z> G12(Z>
: — 0 —

* The operator evolution yields an infinite hierarchy of operators.

¢ In the formal large V. limit, the system closes (like BK)
Not well-justified!

* Neglects quarks
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| The Large - N, Limit |

Y A

0 0 .
Fo2.21(2) So2(2) Soa(2)
Giolz) = ) L + i 0 + il - =B Gl
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: — 0 —

* The operator evolution yields an infinite hierarchy of operators.

¢ In the formal large V. limit, the system closes (like BK)
Not well-justified!

* Neglects quarks

e System closes in terms of the polarized dipole operator.
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| The Large - N, Limit |

0 0 .
Fo2.21(2) So2(2)
+ I - IR G1o(2)

Gio(z) = o — L + -
Goi(2) G12(2)
: R —

Y A

* The operator evolution yields an infinite hierarchy of operators.

¢ In the formal large V. limit, the system closes (like BK)
Not well-justified!

* Neglects quarks

e System closes in terms of the polarized dipole operator.

* However, dipoles are not independent. kz
Q <+ KL 2T < -

* Phase space depends on the “neighbor dipole.”
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More Realistic: Large N, [N

* To keep the quark contributions, must take both N, /N ¢ large.
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More Realistic: Large N, [N
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e To keep the quark contributions, must take both N, N r large.

e System closes, but even more complicated.
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More Realistic: Large N, [N
e o N l@w(z) +
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e To keep the quark contributions, must take both N, N r large.

e System closes, but even more complicated.

e Must distinguish between “true quark’” dipoles and “false gluon™ dipoles.
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| Outlook: Pressing Questions |

e Can we solve the helicity evolution in ANY systematic approximation?
e Large N.,[N¢? Only large N.?

* Does the growth persist at small x?
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| Outlook: Pressing Questions |

e Can we solve the helicity evolution in ANY systematic approximation?
e Large N.,[N¢? Only large N.?

* Does the growth persist at small x?

e What is the role of saturation?

* Does multiple unpolarized scattering reduce the intercept?
* Does saturation keep the IR sector from becoming nonperturbative!?
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e Can we solve the helicity evolution in ANY systematic approximation?
e Large N.,[N¢? Only large N.?

* Does the growth persist at small x?

e What is the role of saturation?

* Does multiple unpolarized scattering reduce the intercept?
* Does saturation keep the IR sector from becoming nonperturbative!?

* Do we need single log corrections!?

e Leading log evolution of the unpolarized gauge link.

e Subleading evolution of the polarized matrix element.
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| Outlook: Pressing Questions |

e Can we solve the helicity evolution in ANY systematic approximation?
e Large N.,[N¢? Only large N.?

* Does the growth persist at small x?

e What is the role of saturation?

* Does multiple unpolarized scattering reduce the intercept?
* Does saturation keep the IR sector from becoming nonperturbative!?

* Do we need single log corrections!?
e Leading log evolution of the unpolarized gauge link.

e Subleading evolution of the polarized matrix element.

* What about other polarization observables like transversity?
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| Summary |

Large-x Evolution (CSS)

2
ozsln2% ~ 1
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| Summary |

Large-x Evolution (CSS)

2
ozsln2% ~ 1

Unpolarized Small-x
Evolution (BK)
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| Summary |

Large-x Evolution (CSS)

2
ozsln2% ~ 1

Unpolarized Small-x
Evolution (BK)

&Sln& ~ 1

Small-x Helicity
Evolution (BER)

ozslnzé ~ 1
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