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Overview

Quark Spin / Orbit Distributions

TMD’s: High-Density Gluon Fields:

Intrinsic Hard Scale (),
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e Hard scale () leads to factorization of the TMD’s themselves.

e Calculable structure from first-principles QCD
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| Quark Anatomy of a Spin-1/2 Hadron |
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| Quark Anatomy of a Spin-1/2 Hadron |
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| Quark Anatomy of a Spin-1/2 Hadron |
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| Quark Anatomy of a Spin-1/2 Hadron |

Quark Polarization
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and momentum.
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Eé L (o7~ | (r - o] @ Bilocal quark fields, connected by a
: T staple-shaped gauge link.
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] srs ni=(#) - () | * Gauge fields describe physical
+ i 5 distortion of quark momentum.
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| Gauge Fields: Dilute vs. Dense Systems |

Dilute Systems: Lensing

M. Sievert TMD’s at High Density: Quasi-Classical Approximation 4/ 18




| Gauge Fields: Dilute vs. Dense Systems |

Dilute Systems: Lensing

* Produced quark and hadron
remnants are color-correlated.
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Dilute Systems: Lensing

* Produced quark and hadron
remnants are color-correlated.

e FSI are attractive, deflecting the
observed quark toward remnants.
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| Gauge Fields: Dilute vs. Dense Systems |

Dilute Systems: Lensing

* Produced quark and hadron
remnants are color-correlated.

e FSI are attractive, deflecting the
observed quark toward remnants.

Dense Systems: Broadening

* High density screens the net charge.

/7% Random FSI

e Rescattering occurs on the
random local charge density.

* FSl| are random, broadening the
quark momentum isotropically.
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| High Density: The Quasi-Classical Limit |

e At high density and weak coupling,
multiple independent scattering
occurs on the local charge density.

Nucleus: A > 1 Proton: p > 1
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e At high density and weak coupling,
multiple independent scattering
occurs on the local charge density.
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e Resumming the high-density effects e 9 S
eads to scattering in a classical ? ? ? ? ? %
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| High Density: The Quasi-Classical Limit |

e At high density and weak coupling,
multiple independent scattering
occurs on the local charge density.

Nucleus: A > 1 Proton: p > 1

e Resumming the high-density effects
leads to scattering in a classical ? ? ? ? ? %
background field.

Nucleus: a§A1/3 ~ 1 Proton: gzp ~ 1 ‘

kT ¢WW

e High charge density defines a hard
momentum scale ()5 which dynamically
screens the IR gluon field. ~kr In &

Q? x a?AY3 x agp

Q2> A°
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| TMD’s in the High-Density Limit |
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| TMD’s in the High-Density Limit |
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| TMD’s in the High-Density Limit |
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| TMD’s in the High-Density Limit |

|
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e (A - D)|U0,7]](A— 1))

Nuclear WF Nucleonic TMD Classical Rescattering
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| Quasi-Classical Factorization |
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| Quasi-Classical Factorization |
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“Average” phase space distribution of nucleons in the nucleus: Leading Order in Al/3
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| Quasi-Classical Factorization |
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“Average” phase space distribution of nucleons in the nucleus: Leading Order in Al/3
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Multiple rescattering on spectator nucleons: Resums ongl/g ~ O(1)
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| Spin Structure of an Unpolarized Nucleus |

e Consider for simplicity an unpolarized nucleus.
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| Spin Structure of an Unpolarized Nucleus |
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e Consider for simplicity an unpolarized nucleus.

e The spin of the nucleons is described by the 2 x 2 density matrix W/

o Inthe rest frame: |[W|xn = Wunplllaa + Whot - [0 a7
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| Spin Structure of an Unpolarized Nucleus |
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e Consider for simplicity an unpolarized nucleus.
* The spin of the nucleons is described by the 2 x 2 density matrix W/
o Inthe rest frame: |[W|x\ = Wynpll]an + Wp()l & arn
W (5,b,5) = Wanp(5,0) + S - Wyat (7, )

e Generalize to covariant spin vector by boosting from the rest frame.
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| Spin Structure of an Unpolarized Nucleus |

e Consider for simplicity an unpolarized nucleus.
e The spin of the nucleons is described by the 2 x 2 density matrix W/
o Inthe rest frame: |[W|x\ = Wynpll]an + Wp()l & arn
W (5,b,5) = Wanp(5,0) + S - Wyat (7, )
e Generalize to covariant spin vector by boosting from the rest frame.

* The nucleons can have any of 4 polarizations: unpolarized, longitudinal,
and transverse (x and y)

M. Sievert TMD’s at High Density: Quasi-Classical Approximation 8/18




| Symmetries of the Nuclear Wave Function |

B d2—|— ! —i(p—np'). "
Wara(5:D) = s | A 000 ()0l ()

* Since the Wigner distribution is built only from the nuclear wave
functions (no gauge link), it has a high degree of symmetry:
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B d2—|— ! —i(p—np'). "
Wara(5:D) = s | A 000 ()0l ()

* Since the Wigner distribution is built only from the nuclear wave
functions (no gauge link), it has a high degree of symmetry:

* Discrete symmetries: P andT‘

* Independent of the collision axis (direction of gauge link) ‘

* In the nuclear rest frame (assuming non-relativistic nucleon motion)

WJ’U(ﬁ [;) — 2(27r)13mN /d3(p —p/>6+i(ﬁ_ﬁ/)'b@£y\[(ﬁ2)qjé\c* (ﬁ/Q)
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| Symmetries of the Nuclear Wave Function |

B d2—|— ! —i(p—np"). "
Wara(5:D) = s | A 000 ()0l ()

* Since the Wigner distribution is built only from the nuclear wave
functions (no gauge link), it has a high degree of symmetry:

* Discrete symmetries: P andT‘

* Independent of the collision axis (direction of gauge link) ‘

* In the nuclear rest frame (assuming non-relativistic nucleon motion)
= 7\ 1 3 N Ai(P—F") by N ( =2\ N* (=12
WJ/U(p7 b) - 2(27)3mpy /d (p — P >6 Hp=p) \Ija (p )\Ija’*(p )
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| Symmetries of the Nuclear Wave Function |

B d2—|— ! —i(p—np"). "
Wara(5:D) = s | A 000 ()0l ()

* Since the Wigner distribution is built only from the nuclear wave
functions (no gauge link), it has a high degree of symmetry:

* Discrete symmetries: P andT‘

* Independent of the collision axis (direction of gauge link) ‘

* In the nuclear rest frame (assuming non-relativistic nucleon motion)
= 7\ 1 3 N Ai(P—F") by N ( =2\ N* (=12
WU/U(p7 b) - 2(27)3mpy /d (p — P )6 Hp=p) \Ija (p )\Ija’*(p )

e 3D Rotational Symmetry ‘

@ Proton: Relativistically moving partons.... [D.Pitonyak
...Lorentz-Invariance Relations??
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| Parameterization of the Wigner Distribution |

e Imposing F, T, and 3D rotation symmetry:
W(ﬁ? ga g) — Wunp[_aa 527 (ﬁ 5)2]
+ 5 (b x ) Woam[p® b%, (5 b)°]

— —

L - S Spin-Orbit Coupling!
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e Imposing F, T, and 3D rotation symmetry:
W(ﬁ? 57 g) — Wunp[_aa 527 (ﬁ 5)2]
+ 5 (b x ) Woam[p® b%, (5 b)°]

— —

L - S Spin-Orbit Coupling!

* Gets integrated over impact parameters with the gauge link possessing
2D rotation symmetry:

/ d*b W (p,b,S) S(br) bl b, — 1b2.5%
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| Parameterization of the Wigner Distribution |

e Imposing F, T, and 3D rotation symmetry:
W (Db, ) = Wung [, 0%, (5 b)’]

+ 5 (bx §) Woaml[p®,b%, (7 b)°]
L-S Spin-Orbit Coupling!

* Gets integrated over impact parameters with the gauge link possessing
2D rotation symmetry:

/ d*b W (p,b,S) S(br) bl b, — 1b2.5%

 The maximum spin-orbit structure of the unpolarized nucleus is

W(pab S) — Wunp[pTabTapz7b2]

+b.(pL % S1) Woam(pF, b7; p2, b2
Depth Dependence!
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| TMD’s of an Unpolarized Nucleus |

Wunp:.U%U Woanr : (L'-S) U—T
* For an unpolarized nucleus, two channels survive:

e Unpolarized nucleons: trivial channel

e Transversely-polarized nucleons: OAM channel
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Wunp:AU%U Woanr : (L‘-S) U—T
* For an unpolarized nucleus, two channels survive:

e Unpolarized nucleons: trivial channel

e Transversely-polarized nucleons: OAM channel

* An unpolarized nucleus has 2 leading-twist TMD’s:

— - kj T
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| TMD’s of an Unpolarized Nucleus |

Wunp:.U%U Woanr : (L'-S) U—T
* For an unpolarized nucleus, two channels survive:

e Unpolarized nucleons: trivial channel

e Transversely-polarized nucleons: OAM channel

* An unpolarized nucleus has 2 leading-twist TMD’s:

— - kj _i .
(I)A(%kL)jﬁ[%V - (Mjth) 571

rUnpolarized quarks, azimuthally symmetric

Boer-Mulders Distribution: Transversely polarized quarks, azimuthally antisymmetric
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| Unpolarized Quark Distribution f{4 |
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Wunp ® le Woam ® flJ_TN
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Unpolarized Channel: fi¥ — £
* Trivial density distribution + momentum broadening
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| Unpolarized Quark Distribution f{4 |

Wunp ® le Woanm ® flJ_TN

ffl(xakT) — (277) /d2+pd2 bdQT‘ d2k/ _7’<kl k _mpL)S([rT bT;]

X (Wunp(p, b) fi (2, k) Z;bz; (pL - K’ ) Woanm(p,b) lN(ilfal‘C,T))

Unpolarized Channel: fi¥ — £
* Trivial density distribution + momentum broadening

OAM Channel: fi7' — f{4

e “Dipole modulation”: Sivers function + momentum broadening
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| Boer-Mulders Distribution hj |
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Ampy mN 2mN
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Unpolarized Channel: hi " — hi#
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| Boer-Mulders Distribution hj |

h —
Wonp @ btV Woan © (A + i)
hih(a,kr) = 3 A3 / > pd®Tbd*r 2k TR T glee b

><(lCL k) Wonp(p, b) hLN(ZU k) P+b (m ]fJ_)WOAM(pab) hjl\’(;;;,k%)
Pob ((mxh)(mwC L k&g(pim)) Woan(p,b) hiz (fak’T))

Ampy mN 2mN

Unpolarized Channel: hi " — hi#
* Trivial density distribution + momentum broadening

OAM Channel: A, hi-l — hi?

* “Dipole modulation”: Transversity + broadening
e “Quadrupole modulation”: Pretzelosity + broadening
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| A Physical lllustration: Woanr + hy — hi? |

L-S Coupling in an ; Y
Unpolarized Nucleus '
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| A Physical lllustration: Woanr + hy — hi? |

L-S Coupling in an ; Y
Unpolarized Nucleus '

Zero net polarization.
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| A Physical lllustration: Woanr + hy — hi? |

2 Yy
After [d°b :

Only bz(ﬁJ_ X Sﬂ_)
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| A Physical lllustration: Woanr + hy — hi? |

SIDIS: Front : Uy

&L

Knockout preserves direction.
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| A Physical lllustration: Woanr + hy — hi? |

SIDIS: Front : Uy

L4
L4
L4

Knockout preserves direction.
But recattering randomizes it.
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A Physical lllustration: Woanr + hy — hi?

SIDIS: Back

Y

v—k,

Direction unmodified.
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A Physical lllustration: Woanr + hy — hi?

SIDIS: Back

+0,

v—k,

Direction unmodified.
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| A Physical lllustration: Woanr + hy — hi? |

SIDIS: Back

The Result: Woaar + hY — hi
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| TMD Mixing |

Spin-Orbit Coupling _I_ Mome”tL['m_B'l;??de"i"g s TMD
oo, ..
Woam S(rijT) Mixing
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| TMD Mixing |

Spin-Orbit Coupling Momentum Broadening T™MD
OAM (’I"T,bT) IXIng
PT - Even
l v
N 1A
Mixing occurs between the LN|_, fA hi'| =y
- . . 17 1
PT-even and Pl-odd sectors: hlegv _ hlLA
T PT - Odd 1)
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| TMD Mixing |

Spin-Orbit Coupling Momentum Broadening T™MD
OAM (’I"T,bT) IXIng
PT - Even
l v
N 1A
Mixing occurs between the LN|_, fA hi'| =y
_ , : 1T 1
PT-even and Pl-odd sectors: hlegv _ hlLA
T PT - Odd 1)

Multiple rescattering is essential to break front / back symmetry

b, dependence provides a PT-reversing factor

e OAM is not enough: mixing vanishes without rescattering.
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| Implications for an EIC |

Deviation from A N Presence
(1 ) simple broadening? e h of OAM!
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| Implications for an EIC |
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( ) TMD’s are known... TMD’s are measured... extract OAM

A N
fN 1N fl Nfl ®Wunp

W, o LS
1 17T 4 fi4 Q) WOAM OAM

(3 ) This provides a prediction for additional mixing in other sectors!

hit ~ hi @ Winp + (BY 4+ b)) @ Woaum
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e Quantum evolution corrections Part Il

2 :
e Large-x ()* evolution (CSS) 424 pm, “Collective
e Small-x evolution: polarized and unpolarized. Behavior of Partons™
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| Summary |

The gauge link which is essential for TMD
structure represents very different physics
at high density.
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Spin-orbit coupling, together with multiple
rescattering, leads to rich TMD mixing
with predictive power.
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