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Outline

• Background : novelty of “high field physics” in “extreme fields” 
• What we expect to see 
• Electron distributions from uniform gas 
• Electron distributions from single atoms 
• Radiation reaction (not in the near term!) 

• Targets 
• Targets that load the whole confocal region 
• Targets that simulate single-atom distribution
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Ultrarelativistic Bound-Free Transitions (xLIPA)
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1. C.	Moore	et	al.,	Phys.	Plasmas	8,	2481	(2001)	
2. A.	Ting	et	al.,	Phys.	Plasmas	12,	010701	(2005)

Gas	Filled	Box.		Density	kept	low	to	minimize	plasma	physics.

In	a	plane	wave,	
accelerated	electrons	
satisfy	an	energy-angle	
relationship:
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Relation	can	be	broken	
in	case	of	tight	focusing

Conventional LIPA Refs:



Transition from LIPA regime to xLIPA regime

• multi-PW pulses access a new regime of free space acceleration 
• Phase resonance leads to super-ponderomotive scaling
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1	-	10	PW

All	results	with	5	um	spot	
and	0.8	um	radiation



Theory of xLIPA (ultra-relativistic limit)
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Assume	a	phase	resonant	trajectory	exists	(field	tensor	slowly	varying	on	world	line).	
To	get	a	simple	formula	neglect	the	axial	field.
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• No	advantage	in	varying	laser	wavelength	for	given	f#	

• Axial	fields	cause	P1/3	scaling	to	go	over	to	P1/2	scaling	

• Analysis	valid	when	photoelectrons	are	accelerated	to	speed	of	light	“abruptly	

enough.”		Based	on	simulation,	this	is	when	a	>	100.

P	=	laser	power	
r0	=	spot	size	
re	=	classical	electron	radius



Ordinary vs. Extreme Ionization Physics
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Analytical	SFA	Prediction,	1021	W/cm2	

(plane	wave)

Simulation,	1022	W/cm2	

(~f/5	focusing)

The	SFA	gives	a	parabola	in	all	cases • Asymmetry	due	to	initial	position	of	atom	
• Highest	energies	due	to	phase	resonance

u	=	p/mc	
1=polarization	
3=propagation	
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• multi-PW pulses produce remarkable photoelectron distributions 
• Discrete features appear that can be associated with sub-cycle 

dynamics (a controversial notion in strong field physics)



What will we see?

Electron Distributions from uniform gas 
Electron distributions from localized atoms

(Adapted	from	10	PW	ELI-NP	briefing	;	must	re-calculate	for	~1	PW)



Electron spectra from uniform argon gas
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10	PW	,	a=100	,	r0	=	5	μm	,	spectra	integrated	over	all	angles

• Coulomb	corrected,	fully	
relativistic	SFA	rate	law	

• Advanced,	high-fidelity,	
particle	pusher	

• Spectra	are	for	tightest	binding	
per	shell

K	shell	spectrum	easily	identifiable



Phase space and finite-acceptance spectrum in uniform 
argon
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10	mrad	acceptance

• Expect	to	collect	~10-8n[cm-3]	electrons	(1017	gives	100	pC)	
• About	half	at	100	MeV,	half	at	1.5	GeV	
• Full	collection	gives	~100	times	more,	peaked	at	100	MeV

 atomic density ~ 1012 cm-3



K-shell electrons from a 10 nm radius argon cluster
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• Distribution	sensitive	to	initial	position	
• Here	the	cluster	is	at	r	=	r0	and	z	=	-2zR

10	mrad	collection	
Counts	are	absolute



25 Exawatt illumination of gold nanoparticles including 
radiation reaction effects (as an interesting aside)
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Neglecting	RR

Including	RR



Targets

Uniform targets 
Localized targets



Target Design Issues

• Prepulses may spoil focusing into certain targets 

• Prepulses may spoil localization of atoms with certain targets 

• Low density preferred to avoid laser propagation issues 

• K-shell electrons do not care about neighboring atoms, even at solid 

density (K-shell binding energy >> lattice binding energy) 

• Localized but random positioning of atoms possible with cluster jet? 

• Diagnostics needed to determine position a posteriori 

• Argon could be replaced with titanium nanoparticles 

• How to introduce into laser focus?
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Original idea was to use a plasma lens target*
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• F/20	focus	into	short	plasma	channel	(plasma	lens)	
• Plasma	lens	does	not	provide	additional	focusing	for	laser	

powers	beyond	about	1	PW	
• Still	may	be	useful	to	generate	low	densities	suitable	for	

xLIPA,	but	short	focal	length	parabola	must	be	used	
• Could	spoil	focusing	if	density	too	high

*	J.P.	Palastro	et	al.,	Phys.	Plasmas	22,	123101	(2015)



Alternatives to plasma lens

• Use a simple argon gas jet 
• Run at lowest possible density 
• Focus in density up-ramp 
• Limit length to discourage LWFA 

• To achieve lower density use a cluster jet 
• Requires cryogenic cooling 
• Spectacular results possible if single cluster illumination can be 

arranged 
• Prepulses may spoil localization 

• Illuminate titanium nanoparticles or foils 
• Some research likely needed regarding nanoparticle acquisition, 

delivery into laser focus, etc.. 
• Plasma jets
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BACKUPS

Additional Viewgraphs



Relativistic Ionization

• Lately relativistic tunneling theories and ab initio simulations are 
becoming available* 

• Quantum mechanical models cannot follow the electron out of the 
laser field except in plane wave case 
• Therefore resort to two-step ionization model 
• Requires particle tracking in extreme fields which is not trivial
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*M.	Klaiber	et	al.,	Phys.	Rev.	A	87,	023418	(2013);	D.F.	Gordon	et	al.,	J.	Comp.	Phys.	267,	50	(2014)	

Bound

Ab	initio	calculation	of	an	
ionizing	wavefunction,	in	the	
case	of	a	superheavy	ion,	
using	NRL	turboWAVE-QO.	

(Perhaps	the	first	such	
calculation	in	three	
dimensions)



xLIPA : Typical Orbits
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Confocal	
Region



Argon nuclei are slightly accelerated by laser fields
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Only	bare	nuclei	gain	significant	energy

Ar16+ Ar18+



Argon Nuclei from Laser Tunneling
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Shell Electrons Maximum	
Potential

Coulomb-SFA BSI

(eV) (W/cm2) (W/cm2)

M 8 143 1.3x1017 2.7x1016

L 8 918 2.5x1019 1.1x1019

K 2 4426 2.3x1021 4.8x1021

1. M.	Klaiber	et	al.,	Phys.	Rev.	A	87,	023418	(2013)	
2. S.	Augst	et	al.,	Phys.	Rev.	Lett.	63,	2212	(1989)

Threshold	Intensities	
Coulomb-corrected	relativistic	SFA	[1]	and	BSI	[2]	Models


