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Outline

« Our perspective from our missions
« Observed quasi-monoenergetic beams
— AlM1+ & Co+
— How was it accomplished experimentally

« Simulations to clarify mechanism

— Critical to do correct simulations M
— Late-time dynamics & self-organization L |
(after laser exits) jproor Pulse
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« Relevance to ion fast ignition (FI) B,
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Our perspective is guided by applications of ion-
beams in near and longer terms

Our applications require large ion flux & MaRIE: Materials Science Mission

benefit from peaked energy spectra 42 keV XFEL & P Rad probes,
multiple dynamic loading sources

* Isochoric heating ~ $2B cost, CDO (mission need) imminent

— Large solid & liquid samples for off- g - —
Hugoniot dynamic material
experiments (LANL MaRIE signature
facility, future)

— Homogeneous warm-dense matter
(e.g., mix in plasma interfaces, today™)

— lon-driven Fast Ignition

« Neutron generation S——
— Moveable system to detect fissile o
material (Global Security)
— Thermometry of dynamic material
samples (NRS, MaRIE)
— Weapons physics

*W. Bang, et al., Sci. Reports 5, 14318 (2015)

Even for basic research supported by LDRD — must deliver experimentally
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Experiment

Trident experiments demonstrate peaked laser-
driven ion spectra in relativistic transparency regime*
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isochoric heating™* * S. Palaniyappan, C. Huang, et al., Nature Comm.
6, 10170 (2015)
- **W. Bang, et al., Sci. Reports 5, 14318 (2015)
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Experiment
Laser-driven ion beams with narrow spectra have
been obtained with diamond & multilayer (Al/C) targets*

Raw TP data — Carbon (60 J) S [ C¢* spectra
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« Targets: diamond 250 nm thick (@f/1.5)
* Linearly polarized, 1054 nm, 650 fs FWHM Gaussian laser pulse

« ~ 5% efficiency

* |lon beam portion with narrow spectrum has a relatively narrow divergence

« Operational keys to obtain such spectra with diamond:

+ back off on the laser energy and intensity — control premature prepulse-
induced target disassembly*

+ choose target thickness so that relativistic transparency ensues during the
peak of the (Gaussian) laser pulse

« Cresultis very relevant to Fast Ignition T e e
[ Los Alamos Nature Comm. 6, 10170 (2015)
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Modeling
Spectral peaks form after the laser is gone*

« Key times for VPIC simulation™:
— Laser enters box @ 0 fs, leaves at 2100fs, end of simulation at 2258 fs
— Laser reaches target: 360fs, RIT: 950 fs, peak laser intensity: 1015 fs
— Laser exits rear side of plasma: 1820 fs (ion spectrum still exponential)

Ny, = 250n, . 2x lower -> premature RIT, lower e- current, 3x lower B,

lon spectral peaks arise after laser is gone

T.o = 32keV, 250n,, target density, f/1.5 laser focus (Intensity- 8 x 102°W/cm?), and p-polarized laser
Laser exits rear-side of the plasma End of simulation

327 fs after transparency
J.. (51820 fs) Ton charge dens1ty (t 2258 fs)
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Modeling

Electron injection into plasma channel

« Tracked electrons associated with ions inthe | |[® W@}
10.6 MeV/u ion peak @ 2140 fs S5 o t200
« Electrons from front accelerated to ~ 1—3 MeV @ o
and move through channel (ergo, not MVA) B B B TR
« Electrons within B, are strongly magnetized, asf @ | | e
ions are not -> electrons may bottle up o .
» Electrons do not have a clear shot thru channel | ..
and localize @ mouth of funnel and @ kink ‘i o w0 o0 10 140 0
(white arrow) o oo
- Charge imbalances set up and persistdueto  =.. oo
electron localization
- Charge imbalances create electrostatic fields GO ey 0 e e
that peak the ion-energy distribution S anann : '“ﬁ”-@- g
RNE 0.5%‘
« Kink in B-field travels to the right, but ions B, F o 5
outrun it | Tk o5
*S. Palaniyappan, C. Huang, et al., - y
- Nature Comm. 6, 10170 (2015) 40 Y am 2 ‘
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Modeling

Electric field from electron accumulation causes
ion-beam spectral peaking.

A localized electric field of finite duration arises oo o ot
. . . Irpe 1oNn je
(opportunely for a certain ion population) from j(>
the bottled-up electrons at the channel kink Low o hT
o _ lon energy E; 9
» Electric field rotates the beam in phase space
making a narrow energy peak
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Ton FI

Fl with light ions (such as C) of DT fuel assembled with long-
pulse laser places specific requirements on ion-beam.*

« Leverage ability of NIF-like laser A M S i
to assemble DT fuel'2 < 2] Clark &Tabaks :
g density profile
« Requirements for Fl with C ion beam3 § | AS/E=20% |
— lon energy E, ~ 400 MeV (to S
penetrate capsule corona) 5 107 ‘\ o ]
— Low ion-energy spread of ~ 10% = o= = & — 7 deal sochoric

(to deliver required power) £ 400 Mev
— laser-ion conversion efficiency ~ 10% € 1. e l ........................ I

0 10 20 30 40 50 60 70
mean kinetic energy (MeV/u)

« Cions (220 MeV, 5% efficiency) @ Trident (~102' W/cm?) are
half the values required for FI (E; and efficiency)

« Since E, ~ [V?, ~ 400 MeV C requires ~ 3 -- 4x10%" W/cm?

« Challenges

— Scallng of eﬂ:|C|ency *E.g., J.C. Fernandez, et al., Nuclear Fusion 49,
. . 065004 (2009);

— focusing the ions to ~ 30 um 1D. Clark & M. Tabak, Nucl. Fus. 24, 1147 (2007);

2 A. Mackinnon, et al., PRL 108, 0215005 (2012);

3J. Honrubia, et al., Phys. PoP 16, 102701 (2009)

(to make FI driver feasible)
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Lessons from our work

« Our best results are with initially solid-density nanofoil targets
— Near critical-density can provide ion beams peaked in energy on Trident

« ltis hard to avoid relativistic induced transparency (RIT) with nanofoils

— Target disassembly, B-fields and RIT are sensitive to pedestal AND near-
peak laser-pulse contrast (~ 10'2 pedestal contrast [108 — 102 W/cm?] can
mess up performance of ~100 nm foils on Trident)

— Scalings are tricky (BS?), need to measure reflected and/or transmitted
laser pulse

— We have not been able to demonstrate light-sail (LS) RPA on Trident

— Therefore, LS RPA is hard; better use all possible technology tricks

« Explore other ion-acceleration mechanisms (MVA?)

« Consider late-time dynamics to rotate ion beam in phase space
— Cooling of co-moving electrons

« Inadequate PIC simulations (too small a box, not resolving Debye
length, not minding the preplasma, etc) can lead us astray

* Published “RPA” experiments may not be RPA at all — late-time

dynamics?
'\
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Why BELLA-I for ion acceleration? Considerations

 For DOE: what is the unique value proposition?

— Unique scientific mission?

— Performance vis-a-vis Gemini, Apollon, upgraded GIST ... (More energy?
Higher intensity? Better contrast? High rep rate? Laser quality control?)

— What program in the US to pay for HEDP research and for what? (e.g.,
issues with HEDLP Joint Program)

— Development for MEC/LCLS-II, MaRIE @ LANL

— Proximity to UC Berkeley

* Some mechanisms require or work best in “1D” geometry (RPA, BOA)
— Temporal intensity variation leads to energy spread in BOA, temporal pulse
shaping controls spread
— Radial intensity gradient = “plasma “bowing,” radial flows (collective effects
& beam spread)

« Chance to have a 30 fs beam simultaneously “better” in key aspects
— Spatially shaped (e.g., nearly flat radially) even at the cost of peak intensity
(maybe ~ 102" W/cm? may be realistic)
— High contrast (pedestal & near pulse)
— Well characterized, routinely diagnosed =2 highly reproducible

« Evaluate known concepts and try novel ones in the ~ 30 fs pulse regime

;oLosAlng§ UNCLASSIFIED . I aF)
siide 12 [N AV

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA Presentations\Conferences\APS\APS_DPP_2015



BELLA-i

Possible performance of a BELLA-I first experiment
on ion acceleration

« 2D highly resolved simulations™ with VPIC by Lin Yin
— Debye length resolved at =0
— 102! W/cm? 6t order super Gaussian
— 30 nm C target 2 g/cc

P S Iog(rho) tes 132.0 fs 1,um ove
e ;\ E LR B R ) AALLLLL LALLLRLAR] LALLLALL LALELLLLY] IALEELLLL) LU 3
AR = | o] FACPRITEBON] =
th I c  10E 4 o 0
I(t). 6" ordet ‘S i 13 o002l 132fs L 4.4%,
SG in space £ kA i = —
Lin. Pol v 10 1 oo 8o
~ah b 11_ 0.000E 3 20%
0 2 4 6 8 10 12 14 00 0.1 02 03 04 05 06
x (micron) ES (GeV)
Iog(rho) t=_ 153 6 fs _ Tum ave
<>l< > 20 E o ' _
11fs| 126fs T 10 3 Ng =
[(t) 6% order qg of 3 8.3%,
SG in space = 1o : Np =
Circ. Pol _20F E 45%
E ol 13 o
0 2 4 6 8 10 12 14 00 0.1 02 0.3 0.4 05 0.
x (micron) ES (GeV)

* RPALS: E=Amc2£2/2[£+1], where & =211,/ plc*and £ < 1 here

« LP case: want constant £ (i.e., t;, /1) = 30 fs, 11nm C foil @ 2 g/cc, 250

MGV Cions * J. C. Fernandez et al., NF 54 (2014) 054006
(@ Los Alamos
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Summary

Our perspective from our missions

Observed quasi-monoenergetic beams
— AlM1+ & C6+
— How was it accomplished experimentally

Simulations to clarify mechanism

— Critical to do correct simulations

— Late-time dynamics & self-organization
(after laser exits)

Relevance to ion fast ignition (FI)
— Fl requirements

)

g‘h-intensity
Laser Pulse

<+>
~100 -- 1,000 nm
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