A perspective on laser-driven ion acceleration: new mechanisms and their dependence

presented by:

Juan C. Fernández

Los Alamos National Laboratory

contributions by colleagues from LANL & Collaborating Institutions

(Acknowledgements throughout the talk)

presented to: **BELLA-i Workshop** LBNL, Berkeley, CA January 21, 2016

LA-UR-16-20476

Collaborators & acknowledgements:

- LANL
 - D. C. Gautier, C. Hamilton, C. Huang (VPIC simulations), S. Palaniyappan (lead experimentalist), M. Santiago, R. C. Shah, JCF

- Sandia National Lab.
 - A. Sefkow

- Ludwig Maximilian Univ.
 - J. Schreiber, C. Kreuzer

Funding:

- Trident operations: LANL ICF and Weapons Science Campaigns
- Project: LANL LDRD program

Outline

- Our perspective from our missions
- Observed quasi-monoenergetic beams
 - Al11+ & C6+
 - How was it accomplished experimentally
- Simulations to clarify mechanism
 - Critical to do correct simulations
 - Late-time dynamics & self-organization (after laser exits)
- Relevance to ion fast ignition (FI)
 - FI requirements
 - Laser requirements
 - Focusing requirements
- **BELLA-I** considerations
- Summary

Our perspective is guided by applications of ionbeams in near and longer terms

Our applications require large ion flux & benefit from peaked energy spectra

- Isochoric heating
 - Large solid & liquid samples for off-Hugoniot dynamic material experiments (LANL MaRIE signature facility, future)
 - Homogeneous warm-dense matter
 (e.g., mix in plasma interfaces, today*)
 - Ion-driven Fast Ignition
- Neutron generation
 - Moveable system to detect fissile material (Global Security)
 - Thermometry of dynamic material samples (NRS, MaRIE)
 - Weapons physics

MaRIE: Materials Science Mission 42 keV XFEL & P Rad probes, multiple dynamic loading sources ~ \$2B cost, CD0 (mission need) imminent

* W. Bang, et al., Sci. Reports 5, 14318 (2015)

Even for basic research supported by LDRD – must deliver experimentally

Trident experiments demonstrate peaked laserdriven ion spectra in relativistic transparency regime*

- Targets: Al 110 nm (f/3) &
 250 nm (f/1.5)
- Linearly polarized, 1054 nm, 650 fs FWHM Gaussian laser pulse
- ~ 5% efficiency
- Al ion beam at ~ 150 MeV (f/3) is being used for isochoric heating**

- * S. Palaniyappan, C. Huang, *et al.*, Nature Comm. 6, 10170 (2015)
- ** W. Bang, et al., Sci. Reports 5, 14318 (2015)

Laser-driven ion beams with narrow spectra have been obtained with diamond & multilayer (AI/C) targets*

- Targets: diamond 250 nm thick (@f/1.5)
- Linearly polarized, 1054 nm, 650 fs FWHM Gaussian laser pulse
- ~ 5% efficiency
- Ion beam portion with narrow spectrum has a relatively narrow divergence
- Operational keys to obtain such spectra with diamond:
 - + <u>back off</u> on the laser energy and intensity control premature prepulseinduced target disassembly*
 - choose target thickness so that relativistic transparency ensues during the peak of the (Gaussian) laser pulse
- C result is very relevant to Fast Ignition

*S. Palaniyappan, C. Huang, et al., Nature Comm. **6**, 10170 (2015)

Spectral peaks form after the laser is gone*

- Key times for VPIC simulation*:
 - Laser enters box @ 0 fs, leaves at 2100fs, end of simulation at 2258 fs
 - Laser reaches target: 360fs, RIT: 950 fs, peak laser intensity: 1015 fs
 - Laser exits rear side of plasma: 1820 fs (ion spectrum still exponential)
- $n_{e0} = 250n_c$. 2x lower -> premature RIT, lower e- current, 3x lower B_z
- Ion spectral peaks arise after laser is gone

Electron injection into plasma channel

- Tracked electrons associated with ions in the 10.6 MeV/u ion peak @ 2140 fs
- Electrons from front accelerated to ~ 1—3 MeV and move through channel (ergo, not MVA)
- Electrons within B_z are strongly magnetized, ions are not -> electrons may bottle up
- Electrons do not have a clear shot thru channel and localize @ mouth of funnel and @ kink (white arrow)
- Charge imbalances set up and persist due to electron localization
- Charge imbalances create electrostatic fields that peak the ion-energy distribution
- Kink in B-field travels to the right, but ions outrun it

*S. Palaniyappan, C. Huang, et al., Nature Comm. **6**, 10170 (2015)

Electric field from electron accumulation causes ion-beam spectral peaking.

 A localized electric field of finite duration arises (opportunely for a certain ion population) from the bottled-up electrons at the channel kink

 Electric field rotates the beam in phase space making a narrow energy peak

"Chirped" ion jet

Ion energy E_i

FI with light ions (such as C) of DT fuel assembled with longpulse laser places specific requirements on ion-beam.*

- Leverage ability of NIF-like laser to assemble DT fuel^{1,2}
- Requirements for FI with C ion beam³

- C ions (220 MeV, 5% efficiency) @ Trident (~10²¹ W/cm²) are half the values required for FI (E_i and efficiency)
- Since $E_i \sim I_1^{1/2}$, ~ 400 MeV C requires ~ 3 -- 4×10²¹ W/cm²
- Challenges
 - scaling of efficiency
 - focusing the ions to $\sim 30 \mu m$
- * E.g., J.C. Fernández, et al., Nuclear Fusion 49, 065004 (2009);
- ¹D. Clark & M. Tabak, Nucl. Fus. **24,** 1147 (2007);
- ² A. Mackinnon, et al., PRL **108**, 0215005 (2012);
- ³J. Honrubia, et al., Phys. PoP 16, 102701 (2009)

Lessons from our work

- Our best results are with initially solid-density nanofoil targets
 - Near critical-density can provide ion beams peaked in energy on Trident
- It is hard to avoid relativistic induced transparency (RIT) with nanofoils
 - Target disassembly, B-fields and RIT are sensitive to pedestal AND near-peak laser-pulse contrast (~ 10¹² pedestal contrast [10⁸ 10⁹ W/cm²] can mess up performance of ~100 nm foils on Trident)
 - Scalings are tricky (BS?), need to measure reflected and/or transmitted laser pulse
 - We have not been able to demonstrate light-sail (LS) RPA on Trident
 - Therefore, LS RPA is hard; better use all possible technology tricks
- Explore other ion-acceleration mechanisms (MVA?)
- Consider late-time dynamics to rotate ion beam in phase space
 - Cooling of co-moving electrons
- Inadequate PIC simulations (too small a box, not resolving Debye length, not minding the preplasma, etc) can lead us astray
- Published "RPA" experiments may not be RPA at all late-time dynamics?

Why BELLA-I for ion acceleration? Considerations

- For DOE: what is the unique value proposition?
 - Unique scientific mission?
 - Performance vis-à-vis Gemini, Apollon, upgraded GIST ... (More energy?
 Higher intensity? Better contrast? High rep rate? Laser quality control?)
 - What program in the US to pay for HEDP research and for what? (e.g., issues with HEDLP Joint Program)
 - Development for MEC/LCLS-II, MaRIE @ LANL
 - Proximity to UC Berkeley
- Some mechanisms require or work best in "1D" geometry (RPA, BOA)
 - Temporal intensity variation leads to energy spread in BOA, temporal pulse shaping controls spread
 - Radial intensity gradient → "plasma "bowing," radial flows (collective effects & beam spread)
- Chance to have a 30 fs beam simultaneously "better" in key aspects
 - Spatially shaped (e.g., nearly flat radially) even at the cost of peak intensity (maybe ~ 10²¹ W/cm² may be realistic)
 - High contrast (pedestal & near pulse)
 - Well characterized, routinely diagnosed → highly reproducible
- Evaluate known concepts and try novel ones in the ~ 30 fs pulse regime

Possible performance of a BELLA-I first experiment on ion acceleration

- 2D highly resolved simulations* with VPIC by Lin Yin
 - Debye length resolved at t=0
 - 10²¹ W/cm² 6th order super Gaussian
 - 30 nm C target 2 g/cc

- RPA LS: $E_{ki} = Am_p c^2 \xi^2 / 2[\xi + 1]$, where $\xi = 2I_L t_L / \rho lc^2$ and $\xi < 1$ here
- LP case: want constant ξ (i.e., t_L/l) \rightarrow 30 fs, 11nm C foil @ 2 g/cc, 250

* J. C. Fernández et al., NF 54 (2014) 054006

Summary

- Our perspective from our missions
- Observed quasi-monoenergetic beams
 - Al11+ & C6+
 - How was it accomplished experimentally

- Critical to do correct simulations
- Late-time dynamics & self-organization (after laser exits)

- FI requirements
- Laser requirements
- Focusing requirements
- BELLA-I considerations
 - Performance in a possible RPA experiment

