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•  Our perspective from our missions 

•  Observed quasi-monoenergetic beams 
–  Al11+ & C6+ 
–  How was it accomplished experimentally 

•  Simulations to clarify mechanism 
–  Critical to do correct simulations 
–  Late-time dynamics & self-organization 

(after laser exits) 

•  Relevance to ion fast ignition (FI) 
–  FI requirements 
–  Laser requirements 
–  Focusing requirements 

•  BELLA-I considerations 

•  Summary 
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Our applications require large ion flux & 
benefit from peaked energy spectra 
•  Isochoric heating 

–  Large solid & liquid samples for off-
Hugoniot dynamic material 
experiments (LANL MaRIE signature 
facility, future) 

–  Homogeneous warm-dense matter 
(e.g., mix in plasma interfaces, today*) 

–  Ion-driven Fast Ignition 

•  Neutron generation 
–  Moveable system to detect fissile 

material (Global Security) 
–  Thermometry of dynamic material 

samples (NRS, MaRIE) 
–  Weapons physics 

 
 

 

Our perspective is guided by applications of ion- 
beams in near and longer terms 

Even for basic research supported by LDRD – must deliver experimentally 

MaRIE: Materials Science Mission 
42 keV XFEL & P Rad probes,        
multiple dynamic loading sources 
~ $2B cost, CD0 (mission need) imminent 

* W. Bang, et al., Sci. Reports 5, 14318 (2015) 
 



Presentations\Conferences\APS\APS_DPP_2015 Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA 

U N C L A S S I F I E D Slide 5 

•  Targets: Al 110 nm (f/3) &  
250 nm (f/1.5)  

•  Linearly polarized, 1054 nm, 
650 fs FWHM Gaussian laser 
pulse 

•  ~ 5% efficiency 

•  Al ion beam at ~ 150 MeV   
(f/3) is being used for 
isochoric heating** 

Trident experiments demonstrate peaked laser- 
driven ion spectra in relativistic transparency regime* 

Experiment 

*  S. Palaniyappan, C. Huang, et al., Nature Comm.  
6, 10170 (2015) 
** W. Bang, et al., Sci. Reports 5, 14318 (2015) 
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•  Targets: diamond 250 nm thick (@f/1.5)  
•  Linearly polarized, 1054 nm, 650 fs FWHM Gaussian laser pulse 
•  ~ 5% efficiency 
•  Ion beam portion with narrow spectrum has a relatively narrow divergence 
•  Operational keys to obtain such spectra with diamond: 

+  back off on the laser energy and intensity – control premature prepulse-
induced target disassembly* 

+  choose target thickness so that relativistic transparency ensues during the 
peak of the (Gaussian) laser pulse 

•  C result is very relevant to Fast Ignition 

Laser-driven ion beams with narrow spectra have            
been obtained with diamond & multilayer (Al/C) targets* 

Experiment 

*S. Palaniyappan, C. Huang, et al., 
Nature Comm.  6, 10170 (2015) 
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•  Key times for VPIC simulation*:  
–  Laser enters box @ 0 fs, leaves at 2100fs, end of simulation at 2258 fs 
–  Laser reaches target: 360fs, RIT: 950 fs, peak laser intensity: 1015 fs 
–  Laser exits rear side of plasma: 1820 fs (ion spectrum still exponential) 

•  ne0 = 250nc . 2x lower -> premature RIT, lower e- current, 3x lower Bz 

•  Ion spectral peaks arise after laser is gone 

Spectral peaks form after the laser is gone* 
Modeling 
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*S. Palaniyappan, C. Huang, et al., 
Nature Comm.  6, 10170 (2015) 
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•  Tracked electrons associated with ions in the 
10.6 MeV/u ion peak @ 2140 fs 

•  Electrons from front accelerated to ~ 1—3 MeV 
and move through channel (ergo, not MVA) 

•  Electrons within Bz are strongly magnetized, 
ions are not -> electrons may bottle up 

•  Electrons do not have a clear shot thru channel 
and localize @ mouth of funnel and @ kink 
(white arrow) 

•  Charge imbalances set up and persist due to 
electron localization 

•  Charge imbalances create electrostatic fields 
that peak the ion-energy distribution 

•  Kink in B-field travels to the right, but ions 
outrun it  

Electron injection into plasma channel 
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Modeling 

*S. Palaniyappan, C. Huang, et al., 
Nature Comm. 6, 10170 (2015) 
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•  A localized electric field of finite duration arises 
(opportunely for a certain ion population) from  
the bottled-up electrons at the channel kink 

•  Electric field rotates the beam in phase space 
making a narrow energy peak 

Electric field from electron accumulation causes 
ion-beam spectral peaking. 
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FI with light ions (such as C) of DT fuel assembled with long-
pulse laser places specific requirements on ion-beam.* 

* E.g., J.C. Fernández, et al., Nuclear Fusion 49, 
065004 (2009); 
1 D. Clark & M. Tabak, Nucl. Fus. 24, 1147 (2007); 
2 A. Mackinnon, et al., PRL 108, 0215005 (2012); 
3J. Honrubia, et al., Phys. PoP 16, 102701 (2009) 

•  Leverage ability of NIF-like laser                                                  
to assemble DT fuel1,2 

•  Requirements for FI with C ion beam3 

–  Ion energy Ei ~ 400 MeV (to                                                             
penetrate capsule corona) 

–  Low ion-energy spread of ~ 10%                                                                      
(to deliver required power) 

–  laser-ion conversion efficiency ~ 10%                                                                                                               
(to make FI driver feasible) 

•  C ions (220 MeV, 5% efficiency) @ Trident (~1021 W/cm2) are 
half the values required for FI (Ei and efficiency) 

•  Since Ei ~ IL1/2, ~ 400 MeV C requires ~ 3 -- 4×1021 W/cm2 

•  Challenges 

–  scaling of efficiency 
–  focusing the ions to ~ 30 µm 

400 MeV 

Ion FI 
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•  Our best results are with initially solid-density nanofoil targets 
–  Near critical-density can provide ion beams peaked in energy on Trident 

•  It is hard to avoid relativistic induced transparency (RIT) with nanofoils 
–  Target disassembly, B-fields and RIT are sensitive to pedestal AND near-

peak laser-pulse contrast (~ 1012 pedestal contrast [108 – 109 W/cm2] can 
mess up performance of ~100 nm foils on Trident) 

–  Scalings are tricky (BS?), need to measure  reflected and/or transmitted 
laser pulse 

–  We have not been able to demonstrate light-sail (LS) RPA on Trident 
–  Therefore, LS RPA is hard; better use all possible technology tricks  

•  Explore other ion-acceleration mechanisms (MVA?) 

•  Consider late-time dynamics to rotate ion beam in phase space 
–  Cooling of co-moving electrons 

•  Inadequate PIC simulations (too small a box, not resolving Debye 
length, not minding the preplasma, etc) can lead us astray 

•   Published “RPA” experiments may not be RPA at all – late-time 
dynamics? 

 

Lessons from our work 
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•  For DOE: what is the unique value proposition? 
–  Unique scientific mission? 
–  Performance vis-à-vis Gemini, Apollon, upgraded GIST … (More energy? 

Higher intensity? Better contrast? High rep rate? Laser quality control?) 
–  What program in the US to pay for HEDP research and for what? (e.g., 

issues with HEDLP Joint Program) 
–  Development for MEC/LCLS-II, MaRIE @ LANL 
–  Proximity to UC Berkeley 

•  Some mechanisms require or work best in “1D” geometry (RPA, BOA) 
–  Temporal intensity variation leads to energy spread in BOA, temporal pulse 

shaping controls spread 
–  Radial intensity gradient ! “plasma “bowing,” radial flows (collective effects 

& beam spread)  

•  Chance to have a 30 fs beam simultaneously “better” in key aspects 
–  Spatially shaped (e.g., nearly flat radially) even at the cost of peak intensity 

(maybe ~ 1021 W/cm2 may be realistic) 
–  High contrast (pedestal & near pulse) 
–  Well characterized, routinely diagnosed ! highly reproducible 

•  Evaluate known concepts and try novel ones in the ~ 30 fs pulse regime 
 

 

Why BELLA-I for ion acceleration? Considerations  
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Possible performance of a BELLA-I first experiment 
on ion acceleration 
•  2D highly resolved simulations* with VPIC by Lin Yin 

–  Debye length resolved at t=0 
–  1021 W/cm2 6th order super Gaussian 
–  30 nm C target 2 g/cc 

* J. C. Fernández et al., NF 54 (2014) 054006 

BELLA-i 

!"#$%&$

!'($%&$11fs 126fs 
I (t)    6th order 
SG in space 
Circ. Pol. 

RPA " !RIT & BOA 
ηE = 
8.3%, 
ηp = 
45% 

•  RPA LS: Eki=Ampc2ξ2 / 2[ξ+1], where ξ= 2ILtL / ρlc2 and ξ< 1 here 
•  LP case: want constant ξ(i.e., tL / l ) ! 30 fs, 11nm C foil @ 2 g/cc, 250 

MeV C ions 

11fs 115fs 
I (t)    6th order 
SG in space 
Lin. Pol. 

RPA " !RIT & BOA 

17 fs 

ηE = 
4.4%, 
ηp = 
20% 
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•  Our perspective from our missions 

•  Observed quasi-monoenergetic beams 
–  Al11+ & C6+ 
–  How was it accomplished experimentally 

•  Simulations to clarify mechanism 
–  Critical to do correct simulations 
–  Late-time dynamics & self-organization 

(after laser exits) 

•  Relevance to ion fast ignition (FI) 
–  FI requirements 
–  Laser requirements 
–  Focusing requirements 

•  BELLA-I considerations 
–  Performance in a possible RPA 

experiment 

 

Summary 

~ 100  -- 1,000 nm 

Ion 
Beam 

Laser 
Target 

High-intensity 
Laser Pulse 

!


