



# **Status of the ELIMED beam-line**

## Valentina Scuderi

(on behalf of the ELI-Beamlines and INFN collaboration)

ELI-Beamlines Project Institute of Physics of the ASCR Prague, Czech Republic

> Workshop on High Energy Density Physics with BELLA-i Lawrence Berkeley National Laboratory January 20 – 22, 2016















# **ELIMAIA:** a <u>user</u> beamline



### ELI Multidisciplinary Applications of laser-Ion Acceleration

#### Courtesy of D. Margarone



Graphics by J. Grosz



# **ELIMAIA user requirements**



#### **Typical user requirements**

- Wide energy and fluence range
- Small energy spread (quasimonoenergetic beams)
- Homogeneous transverse beam distribution
- Shot-to-shot stability (energy and fluence)
- Variable beam spot size
- Full beam control (fluence and dose) with
  5% error
- Possibility of in-air irradiation (e.g. biosamples)
- Use of different ion species (H, He, C, …)

| Beam<br>Parameters    | Enabling<br>Experiments      | Flagship<br>Experiments       |
|-----------------------|------------------------------|-------------------------------|
| Energy range          | 1-60 MeV/u                   | 1-250 MeV/u                   |
| lon No./laser<br>shot | >10 <sup>9</sup><br>(10% BW) | >10 <sup>10</sup><br>(10% BW) |
| Bunch duration        | 0.1-1 ns                     | 0.1-1 ns                      |
| Energy spread         | ±5%                          | ±2.5%                         |
| Collimation<br>Degree | ±0.5°                        | ± 0.2°                        |
| Ion Spot Size         | 0.1-10 mm                    | 0.1-10 mm                     |
| Repetition rate       | 0.01-10 Hz                   | 0.01-10 Hz                    |





fond v ČE











# **ELIMAIA** location

















# **ELIMAIA development**





#### Fyzikální ústav Akademie věd ČR, v. v. i.

Courtesy of D. Margarone











# Ion Acceleration R&D (energy and No.)

#### PRL 109, 234801 (2012)

PHYSICAL REVIEW LETTERS

week ending 7 DECEMBER 2012



Ν

Enhanced

**TNSA** 

#### Laser-Driven Proton Acceleration Enhancement by Nanostructured Foils

D. Margarone,<sup>1</sup> O. Klimo,<sup>1,2</sup> I. J. Kim,<sup>3</sup> J. Prokůpek,<sup>1,2</sup> J. Limpouch,<sup>1,2</sup> T. M. Jeong,<sup>3</sup> T. Mocek,<sup>1</sup> J. Pšikal,<sup>1,2</sup> H. T. Kim,<sup>3</sup> J. Proška,<sup>2</sup> K. H Nam,<sup>3</sup> L. Štolcová,<sup>1,2</sup> I. W. Choi,<sup>3</sup> S. K. Lee,<sup>3</sup> J. H. Sung,<sup>3</sup> T. J. Yu,<sup>3</sup> and G. Korn<sup>1</sup> <sup>1</sup>Institute of Physics of the ASCR, ELI-Beamlines/HiLASE project, Na Slovance 2, 18221 Prague, Czech Republic <sup>2</sup>Czech Technical University in Prague, FNSPE, Brehova 7, 115 19 Prague, Czech Republic <sup>3</sup>Advanced Photonics Research Institute, GIST, 1 Oryong-dong, Buk-gu, Gwangju 500-712, Republic of Korea (Received 3 June 2012; published 3 December 2012)



nanostructures





μm-target

P Výzkum a vývoi

pro inovace



# High rep. Rate cryo-target @ ELI-BL



Solid H test-1 @ CEA – Grenoble (J.P. Perin et al., SPIE 2015, Prague)

**Solid H test-2** @ CEA –Grenoble (*J.P. Perin, D. Chatain,, A. Velyhan, D. Margarone, <u>July 2015</u>)* 







- Target parameters: H<sub>2</sub> 62 µm thick, 1 mm wide
- Laser parameters: **109 J**, 300ps, 6 mm from nozzle



Exp. @ PALS (A. Velyhan, D. Margarone, J. Dostal, J. Ullschmied. D. Chatain et al.) August & December 2015









## **ELIMED** beam line layout



















## ELIMED collection system: Permanent Magnet Quadrupoles



Linearized chicane to define the PMQs set up according to the matching conditions: 1) Waist close to the slit on the radial direction 2) Parallel beam on the transverse plane

beamlines





## **5 PMQs Hybrid multi-array**

- Inner Halbach trapezoidal sectors
- Two external rectangular hybrid arrays
- Outer diameter: 325 mm
- 36 mm magnetic bore
- (3 mm shield + 30 mm net bore)

#### Courtesy of F. Schillaci













# ei Collection system: Permanent Magnet Quadrupoles

## Magnetic field features:

- 3 main magnetization directions
- Gradients: ≈ 100 T/m
- Gradient uniformity: < 2% @ R = 12 mm (80% bore)
- Integrated gradient uniformity < 0.3% @ R = 12 mm (80% bore)





# ELIMED selection system: energy selector UNEN



## **ELIMED** beam transport

PMO



Dipole 3

#### PIC simulation for ELIMAIA source: TNSA-like proton beam

Exponential energy distribution Cut-off: 105 MeV Beam spot size: 40µm diameter Angular divergence at 60 MeV: 5° FWHM

beamlines



## **ELIMED R&D:** beam transport and selection prototypes



#### ESS test experiment @ TARANIS (Queen's University of Belfast)



Collimator

3mm

Target Au

10 μm

INPUT BEAM Ep: 1-10 MeV (ΔΕ/Ε=100%)

SELECTED BEAM Ep : 4.5 ± 0.3 MeV (ΔE/E = 13%)

Ep : 7.4 ± 0.6 MeV (ΔE/E = 16%)

dipole

Slit aperture

500 micron

Collimator

3mm

ESS

Selection Slit 3mm

x 6mm

\*\*\*\*\*\*

Imaging Plate detector

fond v ČR

MINIS

VROPSKÁ UNI

Permanent Magnet Quadrupoles (PMQs) prototype characterization at LNS-INFN

Hybrid Halbach array



4 MQs

INFN

LNS

Net bore 20 mm Lengths: 2x80mm; 2x40mm Gradients: 103 T/m; 100 T/m





DID KONKURENCESCHODNOS









**Dosimetry devices** 

### Energy Selector System

### Quadrupoles





# ELIMED TOF diagnostics test with the VULCAN PW laser @ RAL (UK)



VULCAN Laser parameters Power: 1 PW

Intensity:10<sup>21</sup> W/cm<sup>2</sup> Energy: 650 J Time pulse: 500 fs Target: 25 um Al























# **ELIMED R&D (dosimetry)**







# Multi-gap chamber prototype

tested at LNS CATANA proton



Thanks to the the different gaps we can correct for the charge recombination effects at very high beam intensity

#### Collaboration with Turin INFN section

NS



#### **DE.TEC.TOR.** company

## Faraday cup: absolute dose measurement



RCF stack for energy

spectrum

(Gy)



1000

0 BIAS Voltage [Volt] 2000

-2000

-1000



 $\frac{Q}{e}$ 

 $\cdot 1.602 \cdot 10^{-10}$ 

#### XY scintillating fiber plane and scintillator stack prototypes development in progress

Absolute charge and charge collection efficiency measurements with TANDEM beams performed last December

INVESTICE

DO ROZVOJE





# **ELIMED Geant4 simulation**

#### Main requirements of the application

beamlines

- Accurately simulate the particle source using PIC
- Implement magnetic and electric fields described by maps
- Provide a graphical user interface to easily modify geometry
- Provide tools to easily retrieve output information on specific virtual planes
  - Energy spectrum, emittance, fluence, dose
  - The secondary radiation produced along the beam line













- Feasibility study and design of the main BTL elements completed, tender procedures launched
- ✓ TOF diagnostics realized and tested with a PW laser
- Dosimetric system design completed, prototypes tested with conventional proton beams
- ✓ MC tool for the BTL simulation developed and tested





# Collaboration



### INFN:

Attili Andrea , Calabretta Luciano, Candiano Giacomo, Cirrone Pablo, Cuttone Giacomo, Giordanengo Simona, Giove Dario, Larosa Giuseppina, Leanza Renata, Manna Rosanna, Marchese Valentina, Marchetto Flavio, Milluzzo Giuliana, Pandola Luciano, Petringa Giada, Pipek Jan, Romano Francesco, Sacchi Roberto, Schillaci Francesco

## **ELI-Beamlines:**

Georg Korn, Daniele Margarone, Andrey Velyhan, Lorenzo Giuffrida, Scuderi Valentina, Jan Kaufman, Filip Grepl

















## **INFN and ELI-Beamlines announce the**

# **III ELIMED Workshop**

will be held at INFN-LNS Catania September 7- 9, 2016

Thank you for your attention













