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Abstract

Projections of future climate change rely heavily on climate models, and combin-
ing climate models through a multi-model ensemble is both more accurate than a
single climate model and valuable for uncertainty quantification. However, Bayesian
approaches to multi-model ensembles have been criticized for making oversimplified
assumptions about bias and variability, as well as treating different models as statisti-
cally independent. This paper extends the Bayesian hierarchical approach of Sansom
et al. (2017) by explicitly accounting for spatial variability and inter-model depen-
dence. We propose a Bayesian hierarchical model that accounts for bias between
climate models and observations, spatial and inter-model dependence, the emergent
relationship between historical and future periods, and natural variability. Extensive
simulations show that our model provides better estimates and uncertainty quantifi-
cation than the commonly used simple model mean. These results are illustrated
using data from the CMIP5 model archive. As examples, for Central North America
our projected mean temperature for 2070–2100 is about 0.8 K lower than the simple
model mean, while for East Asia it is about 0.5 K higher; however, in both cases,
the widths of the 90% credible intervals are of the order 3–6 K, so the uncertainties
overwhelm the relatively small differences in projected mean temperatures.

Keywords: IPCC, climate models, Bayesian hierarchical models, spatial dependence
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1 Introduction

The reports of the Intergovernmental Panel on Climate Change (IPCC) provide regular

updates on the state of climate science; the most recent report was the Fifth Assessment

Report published in 2013 (Stocker et al., 2013); the Sixth Assessment Report is due to be

published in 2021. The science in these reports relies heavily on climate models, which form

the basis for projections of future climate under a variety of assumptions about greenhouse

gases and other anthropogenic emissions. The Coupled Models Intercomparison Project,

version 5, popularly known as CMIP5, is a compilation of climate model data from modeling

groups around the world (Taylor et al., 2012). These models allow the user to calculate

projections for a very large number of meteorological variables, on a wide variety of spatial

and temporal scales. For the Sixth Assessment Report, CMIP5 will be replaced by a

considerably expanded set of model simulations, CMIP6, but results from these simulations

are not yet generally available.

From an early stage of the development of climate science around large modeling exer-

cises of this nature, it has been generally recognized that there are many advantages to be

gained by combining results from different climate models rather than by treating the mod-

els one at a time — known as the multi-model ensemble approach. Räisänen and Palmer

(2001) pioneered an explicit probabilistic approach and assumed equal weighting over all

the models. This was quickly contrasted, however, by the Reliability Ensemble Average

approach (Giorgi and Mearns, 2003), which weighted models according to their agreement

with historical data as well as taking account of how well future projections from different

models agreed with each other.

This led to a series of papers taking a Bayesian statistics approach in which prior dis-

tributions were placed on certain unknown model parameters and a posterior predictive
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approach was taken to derive probabilistic projections for future climate variables (Tebaldi

et al., 2004, 2005; Min and Hense, 2006; Tebaldi and Sansó, 2009; Smith et al., 2009).

However, as first noted by Greene et al. (2006) and elaborated further by Tebaldi and

Knutti (2007), these simple Bayesian approaches may not produce realistic projections of

uncertainty. They essentially treated climate model projections as independent perturba-

tions of some unknown “true” climate variable, ignoring both systematic biases between

models and observations and the fact that many climate models tend to be correlated. The

latter statement is true, in part, because of direct collaboration between modeling groups

(for example, many of the supposedly different models in CMIP5 are actually different

versions of climate models produced by the same modeling group), but even in the absence

of such collaboration, climate models from different modeling groups use similar physical

assumptions and computational methodology, so it is natural to expect that their errors

will be correlated. Li et al. (2016) also indicated that some climate models are in a closer

agreement than others.

Another comment about these early approaches to multi-model ensembles is that most

statistical approaches were either for the marginal distribution of a single climate variable

or, at most, the joint distribution of a small number of climate variables, e.g., temperature

and precipitation (Tebaldi and Sansó, 2009). However, Furrer et al. (2007) made an early

attempt at extending the approach to a spatially-correlated random field.

Over the past decade, these approaches have been greatly extended to allow for more

complex and realistic representations of model error and the associated uncertainties. Buser

et al. (2009) allowed for model bias (the systemic discrepancies between model output and

observations that are not eliminated by repeated sampling) and also considered the effect

of inter-annual variability.

Chandler (2013) summarized the strength and weaknesses of Bayesian approaches to

multi-model ensembles, noting, for example, that such approaches could fail if there were
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errors common to all the models, and also that approaches such as the Reliability En-

semble Average, although designed to give higher weight to the more reliable models, in

practice often performed worse than simple uniform averaging over all the models (Weigel

et al., 2010). He proposed an alternative approach, independently developed by Rougier

et al. (2013), which was based on the notion of exchangeability and characterized by Chan-

dler (2013) as “reality is treated essentially as though it were another simulator.” In this

paradigm, increasing the number of simulators will not necessarily reduce the uncertainty

to zero. However, the approach in effect decomposes the errors in a climate model as

the sum of its deviation from some overall average “consensus” model, and the deviation

between the consensus model and the true Earth system.

Another idea to appear around the same time was that of an “emergent relationships”

(or “emergent constraints”), which refers to some fixed relationships that are common to all

climate models; Bracegirdle and Stephenson (2012, 2013) showed examples for Arctic sea

ice. In effect, such a model would imply the existence of some fixed parameter(s) describing

the relationships between present and future climates that are common to all models.

These ideas have all been brought together in the recent paper (Sansom et al., 2017)

which, to quote the authors, “accounts for model uncertainty, model inadequacy, internal

variability, natural variability, observation uncertainty and emergent relationships”. How-

ever, it does not account for spatial correlation nor dependence between climate models.

The model dependence issues have also been addressed in previous literature. Bishop

and Abramowitz (2013) and Abramowitz and Bishop (2015) pointed out this possible cli-

mate model dependence issue and introduced a replicate Earth paradigm to seek model

dependence from error correlation in some transformed ensemble projections. A recent

paper by Abramowitz et al. (2019) has reviewed all the current approaches to model de-

pendence and discussed their possible application to the forthcoming CMIP6 ensemble.

The present paper extends the model proposed by Sansom et al. (2017) by incorporat-
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ing spatial correlation and dependence between climate models. In common with the main

graphical model by Sansom et al. (2017), we propose in Section 2 a hierarchical model

whose components include climate model outputs and observations, latent variables, and

model parameters, but the main objects considered are spatial random fields, represented by

Gaussian processes with parametric covariance functions. We propose an MCMC sampling

approach to estimate the parameters of the spatial random field, a parameter representing

an emergent relationship, and also, a covariance matrix for inter-model dependence. The

latter therefore allows, explicitly, for the possibility that different climate models may be

dependent because of common modeling strategies or for other reasons that may cause cli-

mate models by different modeling groups to produce similar results. Our extension to take

into account various forms of dependence results in more precise uncertainty quantification.

The rest of the paper is organized as follows. Section 2 describes the hierarchical

model and MCMC sampling strategy in detail. Section 3 contains detailed simulations to

understand how the model performs on simulated synthetic data. Section 4 then shows

how the method applies to real-data examples, the near-surface temperature in Central

North America and East Asia. Section 5 summarizes the benefits of using our approach in

analyzing CMIP5 model outputs and points out directions for potential improvement that

may be used in processing upcoming CMIP6 results.

2 Bayesian hierarchical model

A typical climate model generates averages of a meteorological variable, such as tempera-

ture or precipitation over a finite set of grid cells at a specified temporal resolution. In our

modeling framework, we assume that the data we obtained from the climate models are

integrated over time to create a map of historical and future means.
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2.1 Climate model layers

Climate models are executed under specific initial conditions and generate realizations

that bring internal variability, where each realization is called a climate model run. We

assume that the realizations of each climate model have a different underlying model mean

deviating from the consensus field that all climate models agree. Let D be the spatial grid

for the study domain. For a particular climate variable of interest, we denote the ensemble

consensus random field of all the climate models in the historical and future periods at

location s ∈ D by µH(s) and µF (s), respectively.

Suppose that there is a total number of M available climate models. For each model

m = 1, . . . ,M , the underlying climate model mean in the historical and future periods at

location s are denoted by XHm(s) and XFm(s), respectively. Considering that the historical

and future periods are set far apart, they are assumed to have independent noises. Then,

the proposed statistical models for XHm(s) and XFm(s) are as follows,

XHm(s) = µH(s) + εHm(s),

XFm(s) = µF (s) + εFm(s) + β{XHm(s)− µH(s)},

where the remainder random processes εHm(s) and εFm(s) are the two independent noise

processes, assumed to be zero-mean spatial Gaussian processes. The additional term in

the climate model mean in the future period accounts for the consistent bias in the climate

model means in the two periods, and the coefficient β is called the emergent relationship.

We assume the covariance functions for the two processes εHm(s) and εFm(s) are as follows:

cov
(
εHp(si), εHq(sj)

)
= τ−1

H c(‖si − sj‖; γH)vpq,

cov
(
εFp(si), εFq(sj)

)
= τ−1

F c(‖si − sj‖; γF )vpq,
(1)

where si, sj are two arbitrary locations in the spatial domain D, and p, q = 1, . . . ,M are

any two climate model indices, τH and τF are the inverse of sill parameters accounting

for the spatial variance, γH and γF are the range parameters in the Whittle covariance
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function c(·; γH), c(·; γF ), and vpq controls the non-spatial correlation between model p and

model q. We write all the vpq’s for p, q = 1, . . . ,M as a matrix V with (p, q)-th entry vpq.

It is easy to observe that the covariance functions would remain the same if a constant is

multiplied to τH , τF , and V all together. Therefore, to make τH and τF identifiable, v11 is

fixed to be one, which implies τ−1
H and τ−1

F are the variances at any locations in the climate

model 1. It is noteworthy that τ−1
H c(‖si − sj‖; γH) and τ−1

F c(‖si − sj‖; γF ) describe the

spatial covariance while V accounts for the climate model dependence. Thus, a separable

covariance structure is essentially assumed between these two types of covariances.

Note that the climate model means XHm(s) and XFm(s) are latent states that we do

not observe. The data we have in the climate model outputs are individual climate model

runs simulated from the corresponding climate model with a particular initial condition.

Therefore, it is natural to treat different climate model runs as the corresponding climate

model mean plus some noise associated with internal variabilities. The internal variability

may not lead to white noise and the correlation among different locations could exist.

Thus, we also use spatial Gaussian processes to model the internal variability. Then, for

each climate model m, the climate model run r = 1, . . . , RHm in the historical period and

the climate model run r′ = 1, . . . , RFm in the future period, where RHm and RFm are the

total number of model runs for model m in the historical and future periods, respectively,

are modeled as

XHmr(s) = XHm(s) + εHmr(s),

XFmr′(s) = XFm(s) + εFmr′(s),

where εHmr(s) and εFmr′(s) are zero-mean Gaussian processes with covariance function

cov
(
εHmr(si), εHmr(sj)

)
= φ−1

Hmc(‖si − sj‖; γHm),

cov
(
εFmr′(si), εFmr′(sj)

)
= φ−1

Fmc(‖si − sj‖; γFm).
(2)

The inverse of the sill parameters φHm and φFm are assumed to follow the conjugate
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distributions, which are Gamma distributions as follows,

φHm ∼ Ga(
νH
2
,
νHφ

−1
H

2
), φFm ∼ Ga(

νF
2
,
νFφ

−1
F

2
), (3)

where νH , φH , νF , and φF are unknown hyper-parameters.

2.2 Observation Layers

Section 2.1 describes how the climate model output is related to the underlying ensemble

consensus field. On the other hand, since all the climate models considered in this work

try to mimic the climate of the real world, the consensus field is also linked to the real-

world climate and subsequently the observations. We elaborate these connections in this

section. We call the climate that is actually occurring on the earth the actual climate and

treat it as a random realization from a particular distribution, the mean of which is called

the expected climate and denoted by YH(s) and YF (s), for the historical and the future

periods, respectively. Since the climate models attempt to simulate the real-world climate,

the expected climate can also be treated as a realization from the ensemble consensus field

with some uncertainty, which was also used and discussed by Sansom et al. (2017). That

being said, the expected climate is viewed as a counterpart to the climate model mean

described in Section 2.1. Thus, the same statistical models as used for the climate model

means XHm(s) and XFm(s) are assumed for the expected climate. More specifically,

YH(s) = µH(s) + εH(s),

YF (s) = µF (s) + εF (s) + β{YH(s)− µH(s)}.
(4)

The remainder processes εH(s) and εF (s) are also assumed to be zero-mean spatial Gaussian

processes. However, the covariance function has no model dependence component but a

predetermined scaling factor κ > 0 in front of the spatial covariance accounting for the
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potential inadequacy of climate models in characterizing the variability, i.e.,

cov(εH(si), εH(sj)) = κτ−1
H c(‖si − sj‖; γH),

cov(εF (si), εF (sj)) = κτ−1
F c(‖si − sj‖; γF ).

Then, the actual climate YHa(s) and YFa(s) for the historical and the future periods,

respectively, should be the expected climate plus some noise corresponding to the natural

variability, and we use white noise to model these natural variabilities as shown below,

YHa(s) ∼ N
(
YH(s), φ−1

Ha

)
,

YFa(s) ∼ N
(
YF (s), φ−1

Fa

)
.

The precision parameters of the white noise φFa and φHa are assumed to follow Gamma

distributions with the same mean as φHm and φFm shown in Formula (3) but different

variances, respectively. More specifically, φHa ∼ Ga(νH/(2κ), νHφ
−1
H /(2κ)) and φFa ∼

Ga(νF/(2κ), νFφ
−1
F /(2κ)). We see that the mean of φHa and φHm (φFa and φFm) are

the same, but the shape and rate parameters in the assumed Gamma distributions are

different with a common scaling factor κ. The parameter κ accounts for how the actual

climate might be different than a realization from another “climate model” due to the

potential inadequacy of the internal variability (as expressed through the implemented

climate models) to truly capture natural variability.

Finally, because observations can have measurement errors or errors from other sources

on top of the actual climate, the observations denoted by Wi(s) for i = 1, . . . , N , where

N is the total number of observational data sets, are modeled as actual climate plus white

noise, i.e.,

Wi(s) ∼ N
(
YHa(s), τ−1

W

)
,

where τW is the unknown hyper-parameter for the precision of the white noise. We summa-

rize our full Bayesian hierarchical model in Figure 1, where the relationship among three

types of variables—data, latent states, and parameters—is illustrated.
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µH(s)
µF (s)

XHm(s)
XFm(s)

�
�H , �F

⌧H , ⌧F

XHmr(s)
XFmr(s)

YH(s)
YF (s)

YHa(s)
YFa(s)

Wi(s)

⌧W
�Ha

�Fa
V

�Hm, �Hm

�Fm, �Fm

⌫H , ⌫F

�H ,�F

Figure 1: Illustration of the proposed Bayesian hierarchical model. Diamonds represent the

available data, rectangles represent the latent states, and circles represent the parameters.

2.3 Inference

The advantage of using a Bayesian hierarchical model is that it naturally integrates all

the model components in different layers into a single framework, and all uncertainties in

different layers propagate to the final results. However, the obtained posterior distributions

of latent states or parameters are not only conditional on the data but also depend on the

prior distributions we specified for the parameters. To alleviate the effects of priors, we use

non-informative prior distributions whenever possible, hoping that the priors will have less

influence on the posterior results.
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The prior distributions for all the parameters are specified as follows. We propose

normal prior distributions for µH(s) and µF (s) as µH(s), µF (s) ∼ N(0, 106), and an inverse

Wishart prior distribution for V as V ∼ IW (dṼ ,M + d + 1), where Ṽ is the mean of V

in the prior and d is a predetermined integer that controls the degrees of freedom in the

prior or how informative the prior is. When d is large, the random realization of V will be

closer to Ṽ , i.e., the prior plays a more important role in the posterior. Since we want to

infer the mean of V more from the data, we use the smallest possible integer, one, to make

the priors less informative. Vague priors for all other parameters are proposed as τH , τF ∼

Ga(10−3, 10−3), γH , γF ∼ Unif(0, 106), β ∼ N(0, 106), νH , νF ∼ Ga(10−3, 10−3), φH , φF ∼

IG(10−3, 10−3), γHm, γFm ∼ Unif(0, 106), τW ∼ Ga(10−3, 10−3), where IG stands for the

inverse Gamma distribution and Unif stands for the Uniform distribution.

To estimate the posterior distribution of all the latent states and parameters, we use

Markov Chain Monte Carlo (MCMC) with Gibbs sampling and Metropolis-Hasting for pa-

rameters without an analytic form of the marginal posterior distribution. All the formulae

for the Gibbs and Metropolis-Hasting updates are given in Section S4 in the Supplementary

Materials. The constant κ that reflects how inadequate the climate models represent the

actual earth system is not identifiable in this Bayesian hierarchical setup. Due to our lack

of knowledge about adequacy of the climate models, we assume κ = 1 in the simulation

and application studies in Sections 3 and 4, the value of which was also used in Sansom

et al. (2017). Domain experts may have insights into other choices of κ values which may

improve the inference of the future climate, if the specified value is more reflecting the true

inadequacy. However, we simply use κ = 1 for the most general case.
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3 Simulation study

In Section 2, we have proposed a new Bayesian hierarchical model, the novelty of which

is that both the climate model dependence and the spatial correlation are well accounted

for. In order to investigate the properties of this model and the validity of our inference

procedures, we conduct extensive simulations by generating synthetic data for which the

underlying model is known. We test different aspects of the proposed model and gain

insights into what part of the model is worth modeling and what model components we

may not be able to estimate even if they exist. Careful simulation studies are particularly

necessary for a complex model like the one we proposed because parameters in certain layers

may not be estimated very well, and we need to investigate whether this would affect the

estimation of variables of our primary interest.

In the simulation study, we run experiments with the following parameter setting. We

choose n = 20 × 20 = 400 locations over a regular grid in the two-dimensional domain

[0, 1]×[0, 1]. The number of climate models is M = 38, each of which has RHm = RFm = 10

model runs. The number of observations data sets is N = 5. The true values of the

consensus fields µ∗H , µ∗F and the climate model dependence matrix V ∗ used to generate the

synthetic data are chosen as shown in Figure 2. The chosen values of V ∗ make most pairs

of climate models independent, while several clusters of climate models with correlation

ranging from strong to weak exist. The expected climate is a latent state that is randomly

generated from Formula (4), and one realization as an example is also shown in Figure 2. We

fix the true parameter values as γ∗H = 0.5, γ∗F = 0.5, τ ∗H = 1.5, τ ∗F = 2, τ ∗W = 2, β∗ = 2, φ∗H =

10, φ∗F = 10, ν∗H = 100, ν∗F = 100, φ∗Ha = 10, φ∗Fa = 10. The selected true values γ∗Hm, γ
∗
Fm

for m = 1, . . . ,M are shown in Figure 3 while the true values φ∗Hm, φ
∗
Fm for m = 1, . . . ,M

are randomly generated from the Gamma distributions specified in Formula (3) based on

the chosen ν∗H , ν
∗
F , φ

∗
H , φ

∗
F , one realization of which is also shown in Figure 3. Note that the
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Figure 2: Top panels show the fixed consensus random fields µ∗H and µ∗F in the historical

and future periods, respectively, and the model dependence matrix V ∗ used to generate the

synthetic data in the simulation study. Bottom panels give a realization of the randomly

generated expected climate Y ∗H and Y ∗F in the historical and future periods, respectively.

1 6 11 16 21 26 31 36
m

7

8

9

10

11

Hm

1 6 11 16 21 26 31 36
m

8

9

10

11

12

Fm

1 6 11 16 21 26 31 36
m

0.40

0.42

0.44

0.46

0.48

0.50
Hm

1 6 11 16 21 26 31 36
m

0.40

0.42

0.44

0.46

0.48

0.50
Fm

Figure 3: The fixed range parameters γ∗Hm, γ∗Fm and one realization of the randomly

generated inverse sill parameters φ∗Hm, φ∗Fm for m = 1, . . . ,M in the simulation design.
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choice for γ∗Hm, γ
∗
Fm is arbitrary, which allows us to cover a range of values corresponding

to moderate spatial correlation that vary for different models.

We estimate all the parameters or latent states in the Bayesian hierarchical model

through an MCMC with 30,000 iterations, where the first 10,000 iterations are considered

burn-in and discarded. The prior mean of the climate model dependence matrix, Ṽ , is

chosen as an identity matrix because we try to make the prior as non-informative as possible

and thus assume the prior has no knowledge about the correlation at all. The posterior

mean of each parameter or latent state in the last 20,000 iterations is used as the posterior

estimate. We examined multiple independent MCMC runs with different appropriate initial

values, and the difference among their results are subtle. We show in Figure 4 the differences
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Figure 4: Differences between the estimates and the true values of YH , YF , and V . The

marker ˆ represents the posterior means in the MCMC using our proposed Bayesian hier-

archical model; the marker ¯ represents the multi-model means calculated as the averages

of all the climate model runs; the superscript ∗ represents the true values.
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between the posterior estimates and the true values of variables of our primary interest—the

historical and future expected climate YH and YF , as well as the climate model dependence

matrix V , from one randomly selected MCMC run. Since the multi-model mean, which is

the straight average of all available climate model outputs, is commonly used in forecasting

the future climate in the IPCC report, we also provide the differences between the true

expected climate and the multi-model mean in Figure 4. It can be observed that our

posterior estimates lead to more accurate values in both discovering the historical expected

climate and forecasting the future expected climate. Furthermore, since our inference

is from a Bayesian model, it is very convenient to characterize the uncertainty of the

expected climate, which, however, is challenging for the commonly used multi-model mean

estimates. Uncertainty quantification is particularly important for making probabilistic

forecasts. The estimated posterior distributions through the 20,000 MCMC iterations are

shown in Figure 5. For most parameters or latent states, we observe that the estimated

posterior distributions are Gaussian-like and the posterior means are accurate estimates,

although the estimation of certain parameters such as τH , τF , νH , and νF is less satisfactory.

The latter is not surprising as it is common that some parameters are difficult to estimate

in a complex Bayesian hierarchical model. More importantly, the expected climate YH and

YF , which are of our primary interest, have superior posterior estimates, regardless of a few

other poorly estimated parameters.

To have more assessment of the estimation performance, we show MCMC results from

50 generated synthetic data sets based on the same parameter setting (φ∗Hm and φ∗Fm are

randomly generated for each data set and may be different). The histograms of the 50

differences between the posterior estimates and the true values for several parameters and

latent states are shown in Figure 6. We notice that β tends to be slightly underestimated.

We believe the underestimation is partially caused by the relatively small number of climate

model runs. To verify our conjecture, we conducted experiments where a reduced number of
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Figure 5: The trace plots, the histograms, the posterior means (blue), and the true values

(red) of different parameters or latent states in the MCMC. Note that in the bottom panels,

we only show the trace plots of some latent states at location s = (0, 0).

climate model runs and observation data sets are used, in accordance to the actual number

of climate model runs in CMIP5 and the observation (reanalysis) data sets discussed in

Section 4. We found that the underestimation of β is more significant in such case; however,

the estimation of the expected climate is still accurate. Details of this investigation are

provided in Section S1.2 in the Supplementary Materials. The overall conclusion is that

the estimation of β may be less reliable if the number of climate model runs is small, but

the estimate for the expected climate remains intact. If learning the emergent relationship
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Figure 6: The histograms of the differences between the posterior estimates of parameters or

latent states and the true values in the 50 independent experiments. The marker ˆ represents

the posterior mean using our proposed Bayesian hierarchical model in the MCMC; the

superscript ∗ represents the true values. Note that in the bottom panels, we only show the

histograms of some latent states at location s = (0, 0).

β is of special interest, a large number of climate model runs are required.

The sample mean of the differences between the posterior estimates and true values of

the whole expected climate fields YH and YF in the 50 experiments are shown in Figure 7.

For comparison, we also show in Figure 7 the sample mean of the differences between

the multi-model mean estimates and the true values in the 50 independent experiments,

where we see our results yield much more accurate estimates. Our estimates of unknown

parameters and latent states in the 50 experiments in general perform very well, especially

for the future expected climate YF , which is the quantity we are mostly interested in

and trying to forecast. Examining the accuracy of credible intervals allows us to assess the

performance of the variability estimation; we therefore provide the 95%- and 99%-quantiles

in the posterior distribution and the number of experiments whose true values fall into

18



the estimated 90% credible intervals (the interval between the 5%- and 95%-quantiles) in

Figure 7. The 95%- and 99%-quantiles are treated as the moderate and severe extremes,

respectively. An artifact is observed that the variability along the area border is generally

larger than in the interior area because for the random process at locations along the

border, there are fewer other moderately-correlated locations. If the variability of some

locations along the border is of interest, this artifact can be easily resolved by expanding

the area slightly. Comparing the number of experiments whose true values fall into the 90%

credible intervals to the theoretical benchmark, 45, which is 90% of the 50 experiments, we

conclude that the variability of the estimated expected climate is precisely quantified.
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Figure 7: The first column shows the sample mean of the differences between the multi-

model means (ȲH , ȲF ) and the true values (Y ∗H , Y ∗F ) in the 50 independent experiments.

The second columns shows the sample mean of the differences between the posterior means

(ŶH , ŶF ) and the true values. The third and forth columns show the sample mean of

the differences between the posterior 95%-quantiles (ŶH,95%, ŶF,95%) or the posterior 99%-

quantiles (ŶH,99%, ŶF,99%) and the posterior means. The fifth column shows the number of

cases out of the 50 experiments whose true values fall into the 90% credible intervals.

To demonstrate the importance of including spatial correlation and climate dependence

in the Bayesian hierarchical model, we conducted experiments where these components are
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ignored. The model that ignores the spatial correlation and climate model dependence

acts like the model proposed by Sansom et al. (2017) for combining multiple climate model

runs. Using this simplified model, we found a larger bias in the posterior mean of the ex-

pected climate as well as less accurate estimated variability, leading to a poorly estimated

credible interval. This demonstrates the necessity of taking these two types of correlations

into account in the Bayesian hierarchical model, observing the important role these cor-

relations played in making inference of the expected climate. Detailed results of all these

investigations are given in Section S1.1 in the Supplementary Materials. Noting that the

study areas in the application in Section 4 have a smaller number of locations than what

we have in the simulation study, we also conducted experiments on the synthetic data with

the same number of locations as in Section 4. We found that the results are quite similar

and for succinctness, we do not present these additional experiments.

4 Application

Near-surface air temperature plays an important role in climate research and is a common

output in many climate model products. We use the near-surface air temperature fields

from 38 climate models with a total number of 81 climate model runs from CMIP5. This

climate model data was also used by Herger et al. (2018). The number of available model

runs for each model is given in Table S1 in the Supplementary Materials; the table also

shows the model indices that we arbitrarily assigned.

When climate models construct projections for future climate change, it is necessary to

make assumptions about future emission patterns and their consequences for greenhouse

gas levels in the atmosphere. The IPCC has treated this issue by formulating several

Representative Concentration Pathways (RCPs) that are trajectories of greenhouse gas

concentrations adopted for its Fifth Assessment Report in 2014. The major pathways used
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for climate modeling are RCP2.6, RCP4.5, RCP6, and RCP8.5, where the labels refer to

possible ranges of radiative forcing values in the year 2100 (in watts per square meter). In

this paper, we use RCP4.5 and RCP8.5. Loosely, RCP4.5 corresponds to a moderate degree

of emission control in which greenhouse gases peak around 2040 and then decline. On the

other hand, RCP8.5, often referred to colloquially as the “business as usual” scenario,

assumes that emissions will continue to increase throughout the twenty-first century.

We have historical values simulated by climate models from the year 1956 to 2013

and forecasted future values from 2006 to 2100 under RCP4.5 or RCP8.5 forcings. We

truncate the periods to an equal length for the past and future as 1971–2000 and 2071–

2100, respectively; we choose these periods to eliminate the overlap between the historical

and future periods, to avoid the potentially less trustworthy simulation results in the first

several years in the climate model products, and to put emphasis on the long-term forecast.

For the observation data sets, we use two reanalysis data sets, which were also used

in Herger et al. (2018): Berkeley BEST Land (http://berkeleyearth.org/data/) and

CRU TS (https://crudata.uea.ac.uk/cru/data/hrg/cru_ts_3.23/). There are three

more reanalysis data sets studied in Herger et al. (2018). However, two of them have lower

resolution, and another one is the Berkeley BEST Global data, which is highly correlated

with the Berkeley BEST Land data. Hence, we exclude those three data sets in our analysis.

We investigate the near-surface air temperature in two regions with different character-

istics: the Central North America (CNA) region and the East Asia (EAS) region, illustrated

in Figures 8 and 9. Figure 8 shows the average of the near-surface temperature during 1971–

2000 over the entire globe using all climate model outputs; Figure 9 shows the average of

the observation data sets and climate model runs during 1971–2000 as well as 2071–2100

under RCP4.5 or RCP8.5 in the two study regions. For the EAS region, because a single

spatial covariance model such as the stationary isotropic Whittle covariance function may

not adequately represent the dependence between the continent and island locations, we
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Figure 8: The average of the near-surface temperature (in kelvins) in all climate model

runs during 1971–2000 over the globe.

focus specifically on mainland temperatures and thus exclude Japan for instance. The

four application cases to investigate are the near-surface air temperature in CNA under

RCP4.5, in EAS under RCP4.5, in CNA under RCP8.5, and in EAS under RCP8.5. In

each case, we run MCMC with 130,000 iterations. The first 30,000 iterations are used as

burn-in and discarded. We choose every 5th value in the remaining 100,000 iterations to

reduce auto-correlations existing in consecutive iterations in the MCMC. After thinning,

we have 20,000 samples representing the posterior distribution.

In each application case, we compare our results with the multi-model mean, which is

the average of all the available climate model runs used in the current IPCC report. In
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Figure 9: The average of the near-surface temperature (in kelvins) in the two reanalysis

data sets during 1971–2000 (“Observation-H”), in all the climate model runs during 1971–

2000 (“Model-H”) and during 2071–2100 under RCP4.5 (“Model-F-RCP4.5”) or RCP8.5

(“Model-F-RCP8.5”) in the Central North America (CNA) region and the East Asia region

excluding islands (EAS).

addition, Sansom et al. (2017), hereafter SSB, proposed a model discussed in Section 1 and

studied as a simpler version of our model (without accounting for spatial correlation and

climate model dependence) in the simulation study with results provided in Section S1.1.3

in the Supplementary Materials. More specifically, in the SSB model, Formulas (1) and

(2) are modified by removing the spatial correlation c(‖si − sj‖) and the climate model

dependence vpq as follows,

cov
(
εHp(si), εHq(sj)

)
: τ−1

H c(‖si − sj‖; γH)vpq −→ τ−1
H ,

cov
(
εFp(si), εFq(sj)

)
: τ−1

F c(‖si − sj‖; γF )vpq −→ τ−1
F ,

cov
(
εHmr(si), εHmr(sj)

)
: φ−1

Hmc(‖si − sj‖; γHm) −→ φ−1
Hm,

cov
(
εFmr(si), εFmr(sj)

)
: φ−1

Fmc(‖si − sj‖; γFm) −→ φ−1
Fm.
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Figure 10: Two model runs and their differences (in kelvins) from the climate model

CanESM2. Top panels show the monthly average of the near-surface air temperature

in January 1981, and bottom panels show the average during the historical period from

1971 to 2000.

We clearly see the spatial correlation in the climate model runs in Figure 10, where two

model runs of CanESM2 in a specific month and the average over the historical period are

shown. Looking at the differences depicted in the right panels in Figure 10, we observe the

spatial correlation in the deviation of climate model runs from the climate model means,

because we would see white noises in the absence of spatial correlation.

4.1 Results for the two regions under the two forcings

Figure 11 summaries our posterior results compared to the SSB model and the multi-model

mean using climate model outputs in the CNA region where RCP4.5 is used for the future

forecast. The multi-model mean provides much higher temperature estimates than our

posterior mean at the majority of locations. The difference between the estimated temper-

atures from the SSB model and our model is comparatively small and has both positive and

negative values. However, the SSB model yields a larger variability in the historical period
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Figure 11: Results in the CNA region from different approaches, where the climate model

outputs under RCP4.5 is used. ŶH and ŶF are the posterior mean of the expected climate

in the historical and the future periods using our proposed hierarchical model, whereas Ŷ ′H

and Ŷ ′F are the posterior mean using the SSB model. ȲH and ȲF are the multi-model mean,

i.e., the average using all climate model runs. ŝd(·) is the estimated standard deviation in

the MCMC. Unit: kelvin.

and a smaller variability in the future than our model does. Recall that in the simulation

study (results given in Section S1.1.3 in the Supplementary Materials), we have shown

that the SSB model fails to provide accurate mean and variability estimates. Trace plots

of selected parameters and latent states from two MCMC runs of our proposed Bayesian

hierarchical model are given in Figure S13 in the Supplementary Materials. Although the

estimates of the spatial parameters, particularly those associated with the climate models

with only one model run, are not optimal, the estimates of the most important latent states

YH and YF are robust and trustworthy. This agrees with the findings in our simulation
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Figure 12: Results in the CNA region from different approaches, where the climate model

outputs under RCP8.5 are used. The same notation as in Figure 11 is used.

study where the number of climate model runs and observational products is identical to

those in CMIP5 (detailed results are given in Section S1.2 in the Supplementary Mate-

rials). The posterior distribution of the climate dependence matrix V and the emergent

relationship β are also stable, but β may be underestimated based on our findings in the

simulation study. If learning the emergent relationship β and all the spatial parameters is

also of interest, more climate model runs are required, especially from the climate models

that have only one model run (see Figure S10 in the Supplementary Materials).

Figure 12 shows the results in the CNA region where the climate model outputs under

RCP8.5 are used for the future forecast. Compared to the results under RCP4.5, the future

expected climate YF for the near-surface temperature under RCP8.5 has higher values,

which behaves as expected because of the higher emission level that contributes to global

warming. The comparison between our model result and the multi-model mean or the SSB
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Figure 13: Results in the EAS region from different approaches, where the climate model

outputs under RCP4.5 are used. The same notation as in Figure 11 is used.

model is similar to that in the RCP4.5 case. The multi-model mean tends to provide much

higher temperatures. The SSB model gives both higher and lower temperatures and yields

a larger variability in the historical period but a smaller variability in the future.

The inference results from different approaches in the EAS region are shown in Figure 13

under RCP4.5 and Figure 14 under RCP8.5. Most conclusions are similar to those in the

CNA region except that the multi-model means now tend to have lower values at the

majority of locations, especially in the southern part of the EAS region. We are not sure

what causes the opposite signs of difference between the multi-model mean and our results

in these two regions. One possible reason may be the different availability of observational

records in these two regions that can be used to validate the climate models, but more

scientific research is needed to interpret this finding.
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Figure 14: Results in the EAS region from different approaches, where the climate model

outputs under RCP8.5 are used. The same notation as in Figure 11 is used.

4.2 Probabilistic investigation of the difference between the multi-

model mean and our approach

In Section 4.1, we purely discussed the difference between the multi-model mean and the

posterior mean with our proposed model. However, the proposed Bayesian statistical model

naturally yields a full posterior distribution, which allows us to examine the multi-model

mean estimation in the context of the posterior distribution. Figure 15 shows the corre-

sponding probabilities of the quantiles in the posterior distribution equal to the multi-model

mean estimates for the future forecast, under both RCP4.5 and RCP8.5. We observe that

at the majority of the locations in the CNA region under either forcing, the multi-model

mean estimates correspond to very high quantiles in our posterior distribution, indicat-

ing large chances for overestimating the future near-surface temperature. However, in the

EAS region, the multi-model mean estimates tend to underestimate the future near-surface
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Figure 15: The corresponding probabilities of quantiles in the posterior distribution of the

future expected climate YF from our proposed model equal to the multi-model mean in

each of the four application cases.

temperature at most locations, especially in the southern part. The overestimation or un-

derestimation patterns are quite similar under the two different forcings in the same region.

Table 1 further summarizes the climate impact of our work, where the differences of the

predicted mean temperature for 2070–2100 over the entire CNA or EAS region between

our method and the multi-model mean as well as the resulting 90% credible intervals by

our method are given. Our projected mean temperature in the CNA region for 2070–2100

is about 0.8 K lower than the multi-model mean, while in the EAS region it is about 0.5 K

higher; however, in both cases, the widths of the 90% credible intervals are of the order 3–6

K, so the uncertainties overwhelm the comparatively small differences in projected mean

temperatures. Similarly, we also provide these results for the SSB model inference. We see

that the SSB model leads to higher mean temperatures than our model, and the widths of

the 90% are comparatively smaller, especially for the EAS region.

4.3 Summary of climate model dependence results

A byproduct of this investigation is the posterior estimate of the climate model dependence

matrix V . We normalize the posterior mean of V to a correlation matrix and show the

estimates for the four application cases in Figure 16. The estimated correlation matrices
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Table 1: Differences of the predicted mean temperature for 2070–2100 over the entire CNA

or EAS region between our method or the SSB model and the multi-model mean as well

as the 90% credible intervals resulting from our method or the SSB model. Unit: kelvin.

Region and Forcing
Region Mean Difference 90% Credible Interval of Region Mean

ŶF − ȲF Ŷ ′F − ȲF ŶF Ŷ ′F

CNA, RCP4.5 -0.71 -0.67 [285.02,288.42] [285.16,288.21]

CNA, RCP8.5 -0.84 -0.65 [286.55,290.77] [287.25,290.68]

EAS, RCP4.5 0.49 0.51 [281.06,286.22] [282.10,285.24]

EAS, RCP8.5 0.42 0.48 [282.60,288.75] [284.21,287.59]

look similar under different forcings in the same region but look quite distinct in different

regions. Generally speaking, the climate models are more correlated with each other in

the EAS region. One possible reason is that more observations in the CNA region can be

used to calibrate climate models individually, leading to more independence among climate

models in this region.
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Figure 16: Correlation estimates among all the climate models for each of the four appli-

cation cases.

It is also observed that all the high correlations are positive, indicating the agreement

of climate model outputs. Table 2 lists the climate model pairs that have estimated cor-
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Table 2: Climate model pairs with estimated correlations greater than 0.7 in all four

application cases. “C45” stands for the estimated correlation in the CNA region under

RCP4.5, “C85” stands for the estimated correlation in the CNA region under RCP8.5,

“E45” stands for the estimated correlation in the EAS region under RCP4.5, and “E85”

stands for the estimated correlation in the EAS region under RCP8.5.

Model 1 Model 2 C45 C85 E45 E85

CCSM4 CESM1-BGC 0.98 0.98 0.98 0.98

CMCC-CMS MPI-ESM-LR 0.79 0.78 0.74 0.83

GFDL-ESM2G GFDL-ESM2M 0.89 0.88 0.99 0.99

GISS-E2-H GISS-E2-H-CC 0.93 0.93 0.97 0.97

GISS-E2-R GISS-E2-R-CC 0.94 0.96 0.98 0.98

HadGEM2-AO HadGEM2-CC 0.76 0.77 0.92 0.93

IPSL-CM5A-LR IPSL-CM5B-LR 0.81 0.79 0.90 0.94

MIROC-ESM MIROC-ESM-CHEM 0.88 0.94 0.98 0.99

MPI-ESM-LR MPI-ESM-MR 0.94 0.94 0.93 0.95

NorESM1-M NorESM1-ME 0.95 0.96 0.98 0.99

relations greater than 0.7 in all four application cases. Except for the pairs CCSM4 versus

CESM1-BGC and CMCC-CMS versus MPI-ESM-LR, all the other highly correlated climate model

pairs share the same main climate model but are coupled with different geophysical compo-

nents. Both CCSM and CESM are climate models operated by National Center of Atmospheric

Research in the USA, where the former is a subset of and has been superseded by the latter.

Therefore, there is no surprise for this pair to be highly correlated, and as a matter of fact,

this pair has the largest correlation among all the climate models. An interesting finding

is the high correlation between CMCC-CMS, which is operated by the Euro-Mediterranean

Center on Climate Change in Italy, and MPI-ESM, which is operated by the Max Planck In-
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stitute in Germany, although the correlation between this pair is comparatively lower than

the other pairs. This high correlation may be due to the fact that both climate models

make use of the atmospheric model component ECHAM. More domain expertise may be

required to fully interpret the correlation between this climate model pair.

5 Discussion

In this paper, we have extended previous approaches to multi-model ensembles by incor-

porating two features of climate models that have been analyzed on their own in previous

papers, but not in conjunction with the other sources of variability in climate model projec-

tions: spatial correlation and dependence among climate models. As a result, we are able

to produce posterior distributions for spatial climate model projections that incorporate

natural and internal variability, biases and correlations in climate model outputs, emergent

relationships, and the agreement of historical climate model runs with observational data.

The results of Sections 4.1 and 4.2 illustrate some comparisons between our approach and

the earlier SSB approach, as well as the uniform model averaging approach.

There are still a number of limitations of our statistical model. In particular, it assumes

that the spatial fields have a stationary isotropic structure and that the joint distributions

of spatial fields over several models have a separable covariance structure, as is evident

from Formula 1. These assumptions may be reasonable when applied to relatively small

regions, but we would not expect a stationary isotropic spatial covariance function to be

applicable over the whole earth. In addition, it would be worthwhile to investigate adding

a temporal component to the model in order to accommodate inter-annual variability.

It could also be of interest to explore in more detail the potential of this approach to

model climate extremes. Section 4.2 has shown how we can use quantiles of the posterior

distribution to compare one set of model projections with another, but it would require
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a separate investigation to determine how robust the present approach is for calculating

extreme quantiles of future climate variables.

As climate science moves from CMIP5 to CMIP6, there is likely to be even more demand

for advanced statistical approaches for multi-model ensembles.

The code and data used in analyzing the near-surface temperature in the Central North

America region and the East Asia region can be found in https://github.com/hhuang90/

Combine-CMIP5.
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Supplementary Materials

S1 Additional results in the simulation studies

In this section, we present in detail the additional results in the simulation studies when

we ignore certain model parts in the inference procedure or reduce the number of climate

model runs and observational data sets.

S1.1 Simplified model inference

We show results of different scenarios of ignoring certain parts in the full Bayesian hierar-

chical model in the inference procedure.

S1.1.1 Absence of climate model dependence

The climate model dependence is ignored here, which means the covariance structure in

Formula (1) is changed to Formula (S1).

cov
(
εHp(si), εHq(sj)

)
= τ−1

H c(‖si − sj‖; γH),

cov
(
εFp(si), εFq(sj)

)
= τ−1

F c(‖si − sj‖; γF ).
(S1)

We also conducted 50 independent experiments using the same synthetic data as in Sec-

tion 3, which is generated from the full model described in Section 2 with true parameter

values specified in Section 3. The posterior inference results are given in Figures S1 and S2.

Compared to the full model inference results in Figure 7, we see the errors of the posterior

means are similar but the deviation of posterior 95%- and 99%-quantiles from the posterior

means are much smaller, indicating an underestimated estimate variability. This is also

demonstrated by the number of cases for the true values of YH and YF falling into the 90%

credible intervals where we may consider 45 as a theoretical benchmark.
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Figure S1: The histograms of the differences between the posterior estimates of parame-

ters or latent states and the true values in the 50 independent experiments where we use

Formula (S1) for the random process covariance in the climate model means. The marker

ˆ represents the posterior mean using our proposed hierarchical model in the MCMC; the

superscript ∗ represents the true values.

S1.1.2 Absence of spatial correlation in climate model means in the inference

In this section, we ignore the spatial correlation in the climate model runs by removing the

spatially-correlated noises in Formula (2) and using white noises shown in Formula (S2)

instead.

XHmr(s) ∼ N
(
XHm(s), φ−1

Hm

)
,

XFmr(s) ∼ N
(
XFm(s), φ−1

Fm

)
.

(S2)

In addition, the spatial correlation in the climate model means specified in Formula (1) is

also ignored where we change the covariance structure to Formula (S3).

cov
(
εHp(si), εHq(sj)

)
= τ−1

H vpq,

cov
(
εFp(si), εFq(sj)

)
= τ−1

F vpq.
(S3)

We use the same 50 sets of synthetic data as in Section 3. The posterior inference results
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Figure S2: Summary of the results where we use Formula (S1) for the random process

covariance in the climate model means. The leftmost panels are the sample mean of the

differences between the posterior means (ŶH , ŶF ) and the true values (Y ∗H , Y ∗F ) in the

50 independent experiments. The middle panels show the sample mean of the differences

between the posterior 95%-quantiles (ŶH,95%, ŶF,95%) or the posterior 99%-quantiles (ŶH,99%,

ŶF,99%) and the posterior means in the 50 experiments. The rightmost panels show the

number of cases out of the 50 experiments for the true values falling into the 90% credible

intervals.

are given in Figures S3 and S4. Note that compared to Figure S2, we use different scales

and find larger errors on the posterior means. The estimated variability becomes larger

than the full model inference results in Figure 7 by looking at the deviations of posterior

95%- and 99%-quantiles from the posterior means. We also find that the phenomenon for

the larger estimate variability in the border than the interior area has disappeared in this

case because no spatial correlation is assumed.
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Figure S3: The histograms of the differences between the posterior estimates of parame-

ters or latent states and the true values in the 50 independent experiments where we use

Formula (S2) for climate model runs and Formula (S3) for the random process covariance

in the climate model means. The same notation as in Figure S1 is used.
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Figure S4: Summary of the expected climate results where we use Formula (S2) for climate

model runs and Formula (S3) for the random process covariance in the climate model

means. The same notation as in Figure S2 is used.
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S1.1.3 Simplest model inference

Section S1.1.3 acts like a combination of Section S1.1.1 and Section S1.1.2, where we ignore

both the spatial correlation and the climate model dependence in the climate model means

and the spatial correlation in the climate model runs. Therefore, the climate model runs

described in Formula (2) are changed to Formula (S2), and the covariance specified in

Formula (1) is changed to Formula (S4).

cov
(
εHp(si), εHq(sj)

)
= τ−1

H , cov
(
εFp(si), εFq(sj)

)
= τ−1

F . (S4)

Then, this simplest model is similar to that in ? where no spatial random process is

used and no climate model dependence is considered. We use the same 50 sets of synthetic

data as in Section 3. The posterior inference results are given in Figures S5 and S6. We

see the underestimated posterior variabilities are similar to those in Section S1.1.1, and the

posterior means have much larger errors than all the results presented before. A detailed

comparison among all these simplified models and the full model inference results are given

in Section S1.1.4.

S1.1.4 Summary of the different simplification models in the inference

Figure S7 summarizes the posterior estimate bias of YH and YF in different model inferences

as well as the number of cases out of the 50 experiments for the true parameter values falling

into the 90% credible intervals. For ease of comparison, we use the same scale among

different model results in Figure S7. We see these simplified models lead to larger bias or

erroneous variability, and the simplest model (SSB model) shows the largest estimate error

in both the mean and the variability.
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Figure S5: The histograms of the differences between the posterior estimates of parame-

ters or latent states and the true values in the 50 independent experiments where we use

Formula (S2) for climate model runs and Formula (S4) for the random process covariance

in the climate model means. The same notation as in Figure S1 is used.
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Figure S6: Summary of the expected climate results where we use Formula (S2) for climate

model runs and Formula (S4) for the random process covariance in the climate model

means. The same notation as in Figure S2 is used.
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Figure S7: The differences between the sample mean of posterior means (ŶH , ŶF ) in the 50

independent experiments and the true values (Y ∗H , Y ∗F ) as well as the number of cases out

of the 50 experiments for the true values falling into the 90% credible intervals in different

models.
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S1.2 Inference results for synthetic data with the same number

of climate model runs and observations as CMIP5

In Section S1.2, we do not ignore any parts of the model in the inference procedure but

reduce the number of climate model runs and observations to make the number of data sets

consistent with the available data in CMIP5 and the reanalysis products. More precisely,

the number of climate model runs in different climate models are reduced according to

Table S1. The number of observation sets is reduced to two, the same as what we have in

Section 4. Note that we still use the same 50 sets of synthetic data in Section 3 but choose

only a subset. The differences between our estimate and the true values of the expected

climate and the climate model dependence V are given in Figure S8. For comparison,

we also show the difference between the multi-model mean results and the true values in

Figure S8. Trace plots and histograms in the MCMC in one experiment are given in Fig-

ure S9. We see though the expected climate YH and YF still have good posterior estimates

and perform much better than the multi-model mean results, some other parameters have

biased posterior means or do not reach stationary distributions in the MCMC. In addi-

tion, looking at the spatial parameters φHm, φFm, γHm, γFm for climate model 1, which has

one model run, and climate model 4, which has 6 model runs, illustrated in the first two

rows in Figure S9, we see the posterior estimation of spatial parameters heavily depends

on the number of climate model runs, where φH4, φF4, γH4, γF4 have much better posterior

distributions and we do not really get good stationary distribution for φH1, φF1, γH1, γF1.

To have a better view on this, we summarize the spatial parameter posterior estimates

associated with different climate models in the 50 experiments in Figure S10, where the

absolute sample means of the relative differences between the posterior estimates and the

true values are given and the climate models that have relative errors less than 20% or

greater than 80% are highlighted. We see most of the cases for the accurate posterior
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Figure S8: Differences between the estimates and the true values of YH , YF , and V . The

marker ˆ represents the posterior means in the MCMC using our proposed Bayesian hierar-

chical model; the marker ¯ represents the multi-model means calculated as the averages of

all the climate model runs; the superscript ∗ represents the true values. The results come

from the synthetic data with the same number of climate model runs as in CMIP5 and

observations as in the reanalysis products.

estimates are associated with climate models with more than one model runs and all the

bad estimators come from the climate models with only one model run. The histograms of

other parameter posterior means in the 50 experiments are given in Figures S11 and the

posterior details about the expected climate are given in Figure S12. Compared to what we

get in Section 3, we see that the estimates of YH and YF still have similar posterior means

but slightly larger parameter estimate variabilities and longer credible intervals. However,

β is more underestimated.

In conclusion, given the data with the same size as CMIP5, we are less confident about
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Figure S9: The trace plots, the histograms, the posterior means (blue), and the true values

(red) of different parameters or latent states in the MCMC, where we use the synthetic

data with the same number of climate model runs as in CMIP5 and observations as in the

reanalysis products.
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Figure S10: The absolute sample means of the relative differences between the posterior

estimates and the true values for φHm, φFm, γHm, γFm in the logarithm scale. Two thresh-

olds for 20% and 80% are drawn in each case, respectively. All the climate models above

the 80% threshold are marked with the corresponding number of climate model runs on the

top; all the climate models below the 20% threshold are marked with the corresponding

number of climate model runs on the bottom. The marker ˆ represents the posterior mean,

and the superscript ∗ represents the true values. We use the synthetic data with the same

number of climate model runs as in CMIP5 and observations as in the reanalysis products.

the estimate of the emergent relationship. However, the estimate for the future expected

climate YF is still accurate and can show us what the future may look like under given

forcings by use of the climate model outputs. Furthermore, the estimates of the spatial

parameters in the proposed Bayesian hierarchical model are mostly accurate for the climate

models with more than one model runs. On the contrary, we generally do not obtain

satisfactory posterior results for spatial parameters associated with climate models with
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Figure S11: The histogram of the differences between the posterior estimates of parameters

or latent states and the true values in the 50 independent experiments. The results come

from the inference using the synthetic data with the same number of climate model runs

as in CMIP5 and observations as in the reanalysis products.

only one run. If the emergent relationship and spatial parameters are also of great interest,

more runs of climate models are required, especially for those with only one run.
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Figure S12: Summary of the results using the synthetic data with the same number of

climate model runs as in CMIP5 and observations as in the reanalysis products. The first

column shows the sample mean of the differences between the multi-model mean estimates

(ȲH , ȲF ) and the true values (Y ∗H , Y ∗F ) in the 50 independent experiments. The second

columns shows the sample mean of the differences between the posterior means (ŶH , ŶF )

and the true values. The third and forth columns show the sample mean of the differences

between the posterior 95%-quantiles (ŶH,95%, ŶF,95%) or the posterior 99%-quantiles (ŶH,99%,

ŶF,99%) and the posterior means. The fifth column shows the number of cases out of the

50 experiments for the true values falling into the 90% credible intervals.
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S2 More CMIP5 data details

Table S1 gives the number of model runs available for each model in CMIP5.

Table S1: Name and the corresponding number of model runs for each climate model in

CMIP5. “R” stands for the number of model runs. “I” stands for the arbitrarily assigned

model index in our study when we present our application results.

Model Name R I Model Name R I Model Name R I

ACCESS1-0 1 1 FIO-ESM 3 14 IPSL-CM5B-LR 1 27

ACCESS1-3 1 2 GFDL-CM3 1 15 MIROC-ESM 1 28

BNU-ESM 1 3 GFDL-ESM2G 1 16 MIROC-ESM-CHEM 1 29

CCSM4 6 4 GFDL-ESM2M 1 17 MIROC5 3 30

CESM1-BGC 1 5 GISS-E2-H 5 18 MPI-ESM-LR 3 31

CESM1-CAM5 3 6 GISS-E2-H-CC 1 19 MPI-ESM-MR 1 32

CMCC-CM 1 7 GISS-E2-R 5 20 MRI-CGCM3 1 33

CMCC-CMS 1 8 GISS-E2-R-CC 1 21 NorESM1-M 1 34

CNRM-CM5 1 9 HadGEM2-AO 1 22 NorESM1-ME 1 35

CSIRO-Mk3-6-0 10 10 HadGEM2-CC 1 23 bcc-csm1-1 1 36

CanESM2 5 11 HadGEM2-ES 4 24 bcc-csm1-1-m 1 37

EC-EARTH 4 12 IPSL-CM5A-LR 4 25 inmcm4 1 38

FGOALS-g2 1 13 IPSL-CM5A-MR 1 26

S3 More MCMC results for the application

Figure S13 gives two trace plot results of selected parameters and latent states from two

MCMC runs for our proposed Bayesian hierarchical model using climate model outputs
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Figure S13: Posterior distributions and posterior means of different parameters and latent

states in two independent MCMC runs with our proposed Bayesian hierarchical model

using the climate model outputs under RCP4.5 for the future forecast in the CNA region.

under RCP4.5 for the future forecast in the CNA region. We see that in different MCMC

runs, there is a certain variation in the posterior estimates of spatial parameters possibly

due to the less stable distribution of γHm and γFm, especially for those associated with

climate models that have only one model run (for example, γH1 and γF1). However, the

expected climate YH , YF , which we are mostly interested in, and the emergent relationship β

have quite stable posterior means. In Section S1.2 where the number of climate model runs
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and observations are reduced to the same as CMIP5, we see that γHm and γFm estimates

are quite noisy, but the estimate YH and YF as well as their uncertainties are still accurate.

The estimate of β tends to be underestimated. Hence, we are confident about the accuracy

of the posterior results of YH and YF and think that β may be a little underestimated. We

also believe that if some climate models (especially for those that only have one model run)

can be run more times and provide more replicates, the estimates of γHm and γFm will be

much better and the underestimation of β will be alleviated.

S4 Formulae for the Gibbs updates

We introduce some notation for aggregated variables for ease of presentation. Assume that

we have data over n locations s1, . . . , sn ∈ D. We denote the climate model outputs by

X =
(
XHmr(s), XFmr′(s) : m = 1, . . . ,M, r = 1, . . . , RHm, r

′ = 1, . . . , RFm, s = s1, . . . , sn
)
.

We also denote all the observations by W =
(
Wi(s) : s = s1, . . . , sn, i = 1, . . . , N

)
. For

the latent states, we denote χ = (XHm(s), XFm(s) : m = 1, . . . ,M, s = s1, . . . , sn), Y =

(YH(s), YF (s), YHa(s), YFa(s) : s = s1, . . . , sn), and ξ = (µH(s), µF (s) : s = s1, . . . , sn).

For the parameters, we denote λ = (φHm, φFm, γHm, γFm : m = 1, . . . ,M) as a vector of

parameters involved in the spatial models of the climate model mean and θ = (β, τW , φHa,

φFa, φH , φF , νH , νF , τH , τF , γH , γF , V ) the vector of all other parameters.

The joint posterior of χ,Y, ξ,λ,θ given X,W is

Pr(χ,Y, ξ,λ,θ | X,W)

∝ Pr(X,W | χ,Y, ξ,λ,θ) Pr(χ,Y, ξ,λ,θ)

= Pr(X | χ,λ) Pr(W | Y,θ) Pr(χ | θ, ξ) Pr(Y | ξ,θ) Pr(ξ) Pr(λ | θ) Pr(θ).

We also define some vectors and matrices as follows to present the formulae in this
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section.

yH =
(
YH(s1), . . . , YH(sn)

)T
, yF =

(
YF (s1), . . . , YF (sn)

)T
,

yHa =
(
YHa(s1), . . . , YHa(sn)

)T
, yFa =

(
YFa(s1), . . . , YFa(sn)

)T
,

xH(s) =
(
XH1(s), . . . , XHM (s)

)T
, xF (s) =

(
XF1(s), . . . , XFM (s)

)T
,

XH =
(
xH(s1), . . . ,xH(sn)

)T
, XF =

(
xF (s1), . . . ,xF (sn)

)T
.

xHm =
(
XHm(s1), . . . , XHm(sn)

)T
, xFm =

(
XFm(s1), . . . , XFm(sn)

)T
,

xHmr =
(
XHmr(s1), . . . , XHmr(sn)

)T
, xFmr =

(
XFmr(s1), . . . , XFmr(sn)

)T
,

µH =
(
µH(s1), . . . ,µH(sn)

)T
, µF =

(
µF (s1), . . . ,µF (sn)

)T
.

wi =
(
Wi(s1), . . . ,Wi(sn)

)T
.

The probability density function of Y given W,θ, ξ is,

Pr(Y |W,θ, ξ)

∝ Pr(W | Y,θ) Pr(Y | θ, ξ)

∝
N∏
i=1

exp
(
−
τW

2
(yHa −wi)T(yHa −wi)

)
×

exp
(
−
τH

2κ
(yH − µH)TΣ−1

H (yH − µH)
)
×

exp
(
−
τF

2κ

{
yF − µF − β(yH − µH)

}T
Σ−1
F

{
yF − µF − β(yH − µH)

})
×

exp

(
−
φHa

2
(yHa − yH)T(yHa − yH)

)
× exp

(
−
φFa

2
(yFa − yF )T(yFa − yF )

)
,

where ΣH is an n× n matrix with (i, j)-th entry as c(‖si− sj‖; γH), ΣF is an n× n matrix

with (i, j)-th entry as c(‖si− sj‖; γF ), and c(·; ·) is the Whittle covariance function. Then,

the full conditional distribution of Y is,

yFa | . . . ∼ N
(
yF , φ

−1
FaI

)
,

yHa | . . . ∼ N

(
1

φHa +NτW
(φHayH +

N∑
i=1

τWwi), (φHa +NτW )−1I

)
,

yF | . . . ∼ N

(( τF
κ

Σ−1
F + φFaI

)−1[ τF
κ

Σ−1
F

{
µF + β(yH − µH)

}
+ φFayFa

]
,( τF

κ
Σ−1
F + φFaI

)−1
)
,

yH | . . . ∼ N

(( τF β2

κ
Σ−1
F +

τH

κ
Σ−1
H + φHaI

)−1( τF β
κ

Σ−1
F (yF − µF + βµH) +

τH

κ
Σ−1
H µH + φHayHa

)
,( τF β2

κ
Σ−1
F +

τH

κ
Σ−1
H + φHaI

)−1
)
,

where I is the n× n identity matrix.
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The probability density function of χ given X,θ, ξ,λ is

Pr(χ | X,θ, ξ,λ)

∝ Pr(X | χ,λ) Pr(χ | θ, ξ)

∝
M∏
m=1

RHm∏
r=1

exp

(
−
φHm

2
(xHmr − xHm)TΣ−1

Hm(xHmr − xHm)

)
×

M∏
m=1

RFm∏
r=1

exp

(
−
φFm

2
(xFmr − xFm)TΣ−1

Fm(xFmr − xFm)

)
×

exp
(
−
τH

2

{
vec(XHm)− 1M ⊗ µH

}T
(V ⊗ ΣH)−1

{
vec(XHm)− 1M ⊗ µH

})
×

exp
(
−
τF

2

[
vec(XFm)− 1M ⊗ µF − β

{
vec(XHm)− 1M ⊗ µH

}]T
(V ⊗ ΣF )−1×[

vec(XFm)− 1M ⊗ µF − β
{

vec(XHm)− 1M ⊗ µH
}])

,

where 1M is the M -dimensional vector with all values equal to one, ⊗ is the Kronecker

product, ΣHm is an n× n matrix with (i, j)-th entry as c(‖si − sj‖; γHm), ΣFm is an n× n

matrix with (i, j)-th entry as c(‖si−sj‖; γFm), and c(·; ·) is the Whittle covariance function.

When Mn (the dimension of the matrix V ⊗ΣH) is large, it is computational expensive

to update all xHm at the same time, so we choose to update each xHm sequentially. This

also applies for xFm. We define some notation for operations to an arbitrary matrix K.

K(m,m) denotes the element in the m-th row and m-th column of K, K(i:j,m) denotes the

trimmed m-th column of K consisting of values from i-th row to j-th row, K(m,i:j) denotes

the trimmed m-th row of K consisting of values from i-th column to j-th column, K(i:j,i:j)

denotes the sub-matrix of K consisting of values from i-th row to j-th row and from i-th

column to j-th column. Then, the full conditional distribution of χ is,

xFm | . . . ∼ N

(
(RFmφFmΣ−1

Fm +Q−1
F )−1(φFmΣ−1

Fm

∑RFm
r=1 xFmr +Q−1

F vF ), (RFmφFmΣ−1
Fm +Q−1

F )−1

)
,

xHm | . . . ∼ N

(
(RHmφHmΣ−1

Hm +Q−1
H + β2Q−1

F )−1(φHmΣ−1
Hm

∑RHm
r=1 xHmr +Q−1

H vH +Q−1
F v′H),

(RHmφHmΣ−1
Hm +Q−1

H + β2Q−1
F )−1

)
,
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where I is the n× n identity matrix, and

vF = µF + β(xHm − µH) + (V(m,1:m−1)V
−1
(1:m−1,1:m−1)

⊗ I)×[
vec(XFm(1:n,1:m−1))− 1m−1 ⊗ µF − β

{
vec(XHm(1:n,1:m−1))− 1m−1 ⊗ µH

}]
= µF + β(xHm − µH)+

(XFm(1:n,1:m−1) − βXHm(1:n,1:m−1))V
−1
(1:m−1,1:m−1)

V(1:m−1,m)+

(V(m,1:m−1)V
−1
(1:m−1,1:m−1)

1m−1)(βµH − µF ),

QF = τ−1
F

{
V(m,m) − V(m,1:m−1)V

−1
(1:m−1,1:m−1)

V(1:m−1,m)

}
ΣF ,

vH = µH + (V(m,1:m−1)V
−1
(1:m−1,1:m−1)

⊗ I)
{

vec(XHm(1:n,1:m−1))− 1m−1 ⊗ µH
}

= µH +XHm(1:n,1:m−1)V
−1
(1:m−1,1:m−1)

V(1:m−1,m) − (V(m,1:m−1)V
−1
(1:m−1,1:m−1)

1m−1)µH ,

v′H = β
[
xFm − µF + βµH + (V(m,1:m−1)V

−1
(1:m−1,1:m−1)

⊗ I){
βvec(XHm(1:n,1:m−1))− vec(XFm(1:n,1:m−1)) + 1m−1 ⊗ µF − β1m−1 ⊗ µH

}]
= β

{
xFm − µF + βµH−

(XFm(1:n,1:m−1) − βXHm(1:n,1:m−1))V
−1
(1:m−1,1:m−1)

V(1:m−1,m)+

(V(m,1:m−1)V
−1
(1:m−1,1:m−1)

1m−1)(βµH − µF )
}
,

QH = τ−1
H

{
V(m,m) − V(m,1:m−1)V

−1
(1:m−1,1:m−1)

V(1:m−1,m)

}
ΣH .

The probability density function of ξ given Y,χ,θ is

Pr(ξ | Y,χ,θ)

∝ Pr(Y | ξ,θ) Pr(χ | ξ,θ) Pr(ξ)

∝ exp
(
−
τH

2κ
(yH − µH)TΣ−1

H (yH − µH)
)
×

exp
(
−
τF

2κ

{
yF − µF − β(yH − µH)

}T
Σ−1
F

{
yF − µF − β(yH − µH)

})
×

exp
(
−
τH

2

{
vec(XHm)− 1M ⊗ µH

}T
(V ⊗ ΣH)−1

{
vec(XHm)− 1M ⊗ µH

})
×

exp
(
−
τF

2

[
vec(XFm)− 1M ⊗ µF − β

{
vec(XHm)− 1M ⊗ µH

}]T
(V ⊗ ΣF )−1×[

vec(XFm)− 1M ⊗ µF − β
{

vec(XHm)− 1M ⊗ µH
}])
×

exp

(
−

10−6

2
µT
HµH

)
exp

(
−

10−6

2
µT
FµF

)
,

Then, the full conditional distribution of ξ is

µF | . . . ∼ N

(( τF
κ

Σ−1
F +Q−1

µF
+ 10−6I

)−1[ τF
κ

Σ−1
F

{
yF − β(yH − µH)

}
+Q−1

µF
vµF

]
,{ τF

κ
Σ−1
F +Q−1

µF
+ 10−6I

}−1
)
,

µH | . . . ∼ N

(( τH
κ

Σ−1
H +

τF β
2

κ
Σ−1
F +Q−1

µH
+ β2Q−1

µF
+ 10−6I

)−1×{ τH
κ

Σ−1
H yH +

τF β

κ
Σ−1
F

(
µF + βyH − yF

)
+Q−1

µH
vµH

+Q−1
µF
v′µH

}
,( τH

κ
Σ−1
H +

τF β
2

κ
Σ−1
F +Q−1

µH
+ β2Q−1

µF
+ 10−6I

)−1
)
,
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where
vµF = βµH + (1T

MV
−11M )−1(XFm − βXHm)V −11M ,

QµF
= τ−1

F (1T
MV

−11M )−1ΣF ,

vµH = (1T
MV

−11M )−1XHmV
−11M ,

v′µH
= β

{
µF − (1T

MV
−11M )−1(XFm − βXHm)V −11M

}
,

QµH
= τ−1

H (1T
MV

−11M )−1ΣH .

The probability of λ given X,χ,θ is

Pr(λ | X,χ,θ)

∝ Pr(X | χ,λ,θ) Pr(λ | θ)

∝
M∏
m=1

RHm∏
r=1

φ
n/2
Hm det(ΣHm)−1/2 exp

(
−
φHm

2
(xHmr − xHm)TΣ−1

Hm(xHmr − xHm)

)
×

M∏
m=1

RFm∏
r=1

φ
n/2
Fm det(ΣFm)−1/2 exp

(
−
φFm

2
(xFmr − xFm)TΣ−1

Fm(xFmr − xFm)

)
×

M∏
m=1

φ
νH/2−1
Hm exp(−

νHφHm

2φH
)

M∏
m=1

φ
νF /2−1
Fm exp(−

νFφFm

2φF
).

Then, the full conditional distribution of λ is

φHm | . . . ∼ Ga

(
1

2
(nRHm + νH),

1

2

{RHm∑
r=1

(xHmr − xHm)TΣ−1
Hm(xHmr − xHm) + νHφ

−1
H

})
,

φFm | . . . ∼ Ga

(
1

2
(nRFm + νF ),

1

2

{RFm∑
r=1

(xFmr − xFm)TΣ−1
Fm(xFmr − xFm) + νFφ

−1
F

})
.

Pr(γHm | . . .) ∝ det(ΣHm)−RHm/2 ×
RHm∏
r=1

exp

(
−
φHm

2
(xHmr − xHm)TΣ−1

Hm(xHmr − xHm)

)
× 1[0,106]

Pr(γFm | . . .) ∝ det(ΣFm)−RFm/2 ×
RFm∏
r=1

exp

(
−
φFm

2
(xFmr − xFm)TΣ−1

Fm(xFmr − xFm)

)
× 1[0,106]
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The probability of θ given W,Y,χ, ξ,λ is

Pr(θ |W,Y,χ, ξ,λ)

∝ Pr(W | Y,θ) Pr(Y | ξ,θ) Pr(χ | θ, ξ) Pr(λ | θ) Pr(θ)

∝ τ
Nn/2
W

N∏
i=1

exp
(
−
τW

2
(yHa −wi)T(yHa −wi)

)
×

τ
n/2
H det(ΣH)−1/2 exp

(
−
τH

2κ
(yH − µH)TΣ−1

H (yH − µH)
)
×

τ
n/2
F det(ΣF )−1/2 exp

(
−
τF

2κ

{
yF − µF − β(yH − µH)

}T
Σ−1
F

{
yF − µF − β(yH − µH)

})
×

φ
n/2
Ha exp

(
−
φHa

2
(yHa − yH)T(yHa − yH)

)
×

φ
n/2
Fa exp

(
−
φFa

2
(yFa − yF )T(yFa − yF )

)
×

τ
Mn/2
H det(V ⊗ ΣH)−1/2 exp

(
−
τH

2

{
vec(XHm)− 1M ⊗ µH

}T
(V ⊗ ΣH)−1

{
vec(XHm)− 1M ⊗ µH

})
×

τ
Mn/2
F det(V ⊗ ΣF )−1/2 exp

(
−
τF

2

[
vec(XFm)− 1M ⊗ µF − β

{
vec(XHm)− 1M ⊗ µH

}]T
(V ⊗ ΣF )−1×[

vec(XFm)− 1M ⊗ µF − β
{

vec(XHm)− 1M ⊗ µH
}])
×

M∏
m=1

{νHφ−1
H /2}{νH/2}

Γ(νH/2)
φ
νH/2−1
Hm exp(−

νHφHm

2φH
)×

M∏
m=1

{νFφ−1
F /2}{νF /2}

Γ(νF /2)
φ
νF /2−1
Fm exp(−

νFφFm

2φF
)×

exp(−
10−6

2
β2)×

τ
(10−3−1)
W exp(−10−3τW )×
{νHφ−1

H /(2κ)}{νH/(2κ)}

Γ(νH/(2κ))
φ
νH/(2κ)−1
Ha exp(−

νHφHa

2κφH
)×

{νFφ−1
F /(2κ)}{νF /(2κ)}

Γ(νF /(2κ))
φ
νF /(2κ)−1
Fa exp(−

νFφFa

2κφF
)×

φ
(10−3−1)
H exp(−10−3φH)× φ(10

−3−1)
F exp(−10−3φF )×

ν
(10−3−1)
H exp(−10−3νH)× ν(10

−3−1)
F exp(−10−3νF )×

τ
(10−3−1)
H exp(−10−3τH)× τ (10

−3−1)
F exp(−10−3τF )×

1[0,106](γH)× 1[0,106](γF )×

det(V )−(M+1+d/2) exp
(
−

1

2
tr(dṼ V −1)

)
,

where 1[0,106](·) is the indicator function on set [0, 106] and tr means taking the trace.

21



Then, the full conditional distribution of θ is

τW | . . . ∼ Ga

(
Nn

2
+ 10−3,

N∏
i=1

1

2
(yHa −wi)T(yHa −wi) + 10−3

)
,

φHa | . . . ∼ Ga

(
n

2
+
νH

2κ
,

1

2
(yHa − yH)T(yHa − yH) +

νH

2κφH

)
,

φFa | . . . ∼ Ga

(
n

2
+
νF

2κ
,

1

2
(yFa − yF )T(yFa − yF ) +

νF

2κφF

)
,

φH | . . . ∼ IG

(
10−3 +

νHM

2
+
νH

2κ
, 10−3 +

M∑
m=1

νHφHm

2
+
νHφHa

2κ

)
,

φF | . . . ∼ IG

(
10−3 +

νFM

2
+
νF

2κ
, 10−3 +

M∑
m=1

νFφFm

2
+
νFφFa

2κ

)
,

τH | . . . ∼ Ga

(
1

2
(M + 1)n+ 10−3,

1

2κ
(yH − µH)TΣ−1

H (yH − µH)+

1

2
vec
(
XHm − µH1T

M

)T
vec
(
Σ−1
H (XHm − µH1T

M )V −1
)

+ 10−3

)
,

τF | . . . ∼ Ga

(
1

2
(M + 1)n+ 10−3,

1

2κ

{
yF − µF − β(yH − µH)

}T
Σ−1
F

{
yF − µF − β(yH − µH)

}
+

1

2
vec
(
XFm − µF 1T

M − β(XHm − µH1T
M )
)T×

vec
(
Σ−1
F

{
XFm − µF 1T

M − β(XHm − µH1T
M )
}
V −1

)
+ 10−3

)
,

V | . . . ∼ IW

(
dṼ + τH(XHm − µH1M )TΣ−1

H (XHm − µH1M )

+τF
{
XFm − µF 1T

M − β(XHm − µH1M )
}T

Σ−1
F

{
XFm − µF 1T

M − β(XHm − µH1M )
}
,

2n+M + d+ 1

)
,

β | . . . ∼ N
( vβ
Qβ

,
1

Qβ

)
Pr(νH | . . .) ∝

M∏
m=1

{νHφ−1
H /2}{νH/2}

Γ(νH/2)
φ
νH/2−1
Hm exp(−

νHφHm

2φH
)×

{νHφ−1
H /(2κ)}{νH/(2κ)}

Γ(νH/(2κ))
φ
νH/(2κ)−1
Ha exp(−

νHφHa

2κφH
)× ν(10

−3−1)
H exp(−10−3νH),

Pr(νF | . . .) ∝
M∏
m=1

{νFφ−1
F /2}{νF /2}

Γ(νF /2)
φ
νF /2−1
Fm exp(−

νFφFm

2φF
)×

{νFφ−1
F /(2κ)}{νF /(2κ)}

Γ(νF /(2κ))
φ
νF /(2κ)−1
Fa exp(−

νFφFa

2κφF
)× ν(10

−3−1)
F exp(−10−3νF ),

Pr(γH | . . .) ∝ det(ΣH)−1/2 exp
(
−
τH

2κ
(yH − µH)TΣ−1

H (yH − µH)
)
×

det(ΣH)−M/2 exp
(
−
τH

2

{
vec(XHm)− 1M ⊗ µH

}T
(V ⊗ ΣH)−1

{
vec(XHm)− 1M ⊗ µH

})
× 1[0,106]

Pr(γF | . . .) ∝ det(ΣF )−1/2 exp
(
−
τF

2κ

{
yF − µF − β(yH − µH)

}T
Σ−1
F

{
yF − µF − β(yH − µH)

})
×

det(ΣF )−M/2 exp
(
−
τF

2

[
vec(XFm)− 1M ⊗ µF − β

{
vec(XHm)− 1M ⊗ µH

}]T
(V ⊗ ΣF )−1×[

vec(XFm)− 1M ⊗ µF − β
{

vec(XHm)− 1M ⊗ µH
}])
× 1[0,106],

where νH , νF , γH , and γF do not have a standard from for the full conditional likelihood
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so a Metropolis-Hasting update is used in the sampling, and

vβ = τF /(yH − µH)TΣ−1
F (yF − µF )/κ+

τF vec(XHm − µH1T
M )Tvec{Σ−1

F (XFm − µF 1T
M )V −1}

Qβ = τF (yH − µH)TΣ−1
F (yH − µH)/κ

+τF vec
(
XHm − µH1T

M

)T
vec
(
Σ−1
F (XHm − µH1T

M )V −1
)

+ 10−6

It is also noteworthy that we scale the matrix V so that V(1,1) equals one in each step of

the updates to make τH and τF identifiable.
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