

Λ_c production in the future EIC

Yuanjing Ji^*

* In collaboration with Xin Dong, Matthew Kelsey, Sooraj Radhakrishnan, Nu Xu

Lawrence Berkeley National Laboratory

Outline

- Motivation
- Simulation of Λ_c reconstruction in the future EIC
- Summary

Motivation

- Hadronization
 - Heavy quarks: $m_c \gg \Lambda_{QCD}$, pQCD calculable
 - p+p collisions: enhanced Λ_c^+/D^0 ratio w.r.t fragmentation baseline in e⁺e⁻

initial PDF hard process

- PYTHIA default: MPI-based color reconnection (MPI-CR)
 - newer: QCD-based color reconnection (QCD-CR)

 $\sigma = f_i(x) \otimes \sigma_{hard}^{ij}(x, Q^2) \otimes D_i^h$

introduction junction formation -> enhance baryon production

hadronization

- ep collision in future EIC
 - CR expected universal, never tested in ep
 - clean initial condition, high statistics

3

non-perturbative

All silicon tracking detector for EIC

All-silicon tracker geometry Details of the detector: arXiv:2102.08337

Detector performance

η	σ_p/p - 3T (%)	$\sigma(\mathrm{DCA}_{\mathrm{r}\phi})~(\mu\mathrm{m})$	$p_{\rm max}^{\rm PID} \ ({\rm GeV}/c)$
(-3.0, -2.5)	$0.1{\cdot}p \oplus 2.0$	$60/p_T \oplus 15$	10
(-2.5, -2.0)	$0.02{\cdot}p\oplus 1.0$	$60/p_T \oplus 15$	10
(-2.0, -1.0)	$0.02{\cdot}p\oplus 1.0$	$40/p_T \oplus 10$	10
(-1.0, 1.0)	$0.02{\cdot}p\oplus 0.5$	$30/p_T \oplus 5$	6
(1.0, 2.0)	$0.02{\cdot}p\oplus 1.0$	$40/p_T \oplus 10$	50
(2.0, 2.5)	$0.02{\cdot}p\oplus 1.0$	$60/p_T \oplus 15$	50
(2.5, 3.0)	$0.1{\cdot}p \oplus 2.0$	$60/p_T \oplus 15$	50

https://physdiv.jlab.org/DetectorMatrix/

Detector set up

- Pointing resolution
- PID ability
- Momentum resolution with B=3 T
- Primary vertex resolution
- Tracking efficiency

From full Geant4 simulation

Event simulation and acceptance

- Events generated by PYTHIA6 with EIC tune;
- Apply detector performance;
- Reconstruction channel:

 $\Lambda_c^+ \to p K^- \pi^+$ (B.r.=6.28% PDG) $D^0 \to K^- \pi^+$ (B.r.=3.95% PDG)

• Expect much lower combinatorial background w.r.t p+p collisions

Topology performance and signal projection

4/15/21

- Improving signals with • topology variables;
- Best significance achieved • at $|\eta| < 1$.

6

Projected uncertainty for Λ_c^+/D^0 vs p_T

- Precise measurements of charm baryon in future EIC collider;
- Ability to separate two CR frameworks at low p_T with L=10 fb⁻¹.

Multiplicity dependence

- Multiplicity
 - correlated with density of quarks and gluons in the final state
- Enhanced Λ_c^+/D^0 ratio at high multiplicity in p+p from ALICE - similar structure predicted by QCD-based CR in PYTHIA
- EIC: high tracking efficiency

 $\Lambda_{\rm c}/D^0$

Projected uncertainty for Λ_c^+/D^0 vs multiplicity

- Nch: Number of charged particles at p_T >0.2 GeV/c within $|\eta|$ <3
- Clear separation at high multiplicity with different CR frameworks

Summary

- Heavy flavor hadronization in a better-known initial state systems
 - Λ_c^+/D^0 university of CR framework in different collisions system

- MPI-CR same as fragmentation baseline, fails in p+p

- QCD-CR enhance baryon production in pp and high multiplicity ep collisions

- Charm baryon measurements in the future EIC
 - high statistics, cleaner background
 - better CR model separation power for Λ_c^+/D^0 vs multiplicity w.r.t p_T

Fast simulation procedure and Λ_c reconstruction

• ep 18x275 GeV events generated by PYTHIA6 with EIC tune

https://eic.github.io/software/pythia6.html

- Smear primary vertex and single tracks by fast simulation
- Reconstruction channel

Signal: $\Lambda_c^+ \text{ decay in PYTHIA}$ $\Lambda_c^+ \rightarrow pK^-\pi^+ \text{ non-resonant 3.4\%}$ $\rightarrow p\overline{K^{*0}} \sim 0.5\%$ $\rightarrow \Delta^{++}K^- \sim 0.65\%$ $\rightarrow \Lambda\pi^+ \text{ missing } \Lambda \rightarrow pK^-$ Combinatorial background $-pK^-\pi^+ \text{ right-sign}$ Private Λ^+ measures channel signals

- Reject Λ_c^+ resonance channel signals

