

Nb₃Sn Conductor Characterization

- a selection of critical issues -

<u>Marc Dhallé</u> & Herman ten Kate, University of Twente

- 1. Focus on most critical issues.....
- 2. Critical current density, filaments, AC Loss
- 3. Strain effects on wires and cables
- 4. Stability, degradation, training
- 5. Conclusion

1. From material to a successful magnet

> How to make cables that guarantee the accelerator magnet not to quench or degrade?

Key physics phenomena:

Critical current density - Magnetization & Ramp loss - Stress & Strain - Stability & Training

- Performance
- Manufacturability
- Robustness
- Reliability
- Availability
- Cost

Few key parameters:

 J_c - D_{eff} - Interfilament resistance - Interstrand resistance - Wire architecture - Cooling - Specific Heat

2. J_c - D_{eff} - AC loss - status in Nb₃Sn Rutherford cables

 $J_c \& D_{eff}$: for efficiency-cost-volume reasons the engineering current density in accelerator windings have to be at least some 400 A/mm² at the requested field:

- 8 T at LHC, 11-12 T for HL-LHC, 15-16 T for FCC, 20+T for FCC+
- Non-Cu Jc increase well underway for achieving 1500 A/mm² in <20 μ m filaments at 16T@4.2K, reached in km long wires (see previous talks[†])
- Next: further increase to some 1800 A/mm², for achieving margin and robustness, reduction of D_{eff} to 20 μ m, and making long lengths
- A great success made possible by CERN's drive towards affordable 15-16 T.

Ramp Losses: in strands and cables sufficiently predictable provided inter-filament and inter-strand resistances are under control and filament shape is known.

Hottest issues for cables, and thus for magnet performances are:

- Sustaining Transverse Pressure on cable wide face,
- Achieving no (or little) training and stable long-term performance.
- ✓ So, we will focus on this in the next slides....

Three 16T FCC designs

2. J_c - D_{eff} - AC loss - status in Nb₃Sn Rutherford cables

Literature survey 2015-2021^(*)

Sextupole moment HQ02 magnet

Coupling losses several Rutherford cables US program

Magnetization and ramp losses well-understood when strand magnetization, R_a & R_c are known

• For Nb_3Sn not a major research issue last ~ 5 years (at least not in the public domain).

3.1 Strain effect - Single strands

Literature survey 2015-2021(*)

Internal stress/strain -distribution well-charted with local probes:

- n-diffraction reveals strain distribution on filament level (Scheuerlein 2017, Osamura 2019), role of thermal pre-strain (Suwa 2018), bending strain (Hemmi 2017), pre-bending (Takahashi 2015)
- X-rays reveal strain distribution matrix (Scheuerlein 2017, Jin 2017)
- Related T_c distribution evolves with mechanical / thermal cycling (Wesche 2020).

Modelling has refined to a local filament level:

- Multi-level modelling from coil all the way down to filament (Daly 2018)
- Influence of imperfections on transverse-stress concentration (Zhai 2016) and thermal pre-strain (d'Hauthuille 2017)
- Role of plastic matrix deformation (Ta 2015, Barzi 2019)
- Role of filament cracking on $\sigma(\epsilon)$ (Wang 2016) and on J_{ϵ} (Liu 2018).

381 Max 200 175 150 126 101 76.1 51.3 26.5 1.73 Min Eq Stress (MPa)

Stress distribution magnet strand

Daly 2018

3.1 Strain effect - Single strands

Literature survey 2015-2021^(*)

Single-strand strain response experiments have refined

- Axial strain response well-documented (Liu 2015), including role of factors such as voids (Barth 2018) and filament twist (Seeber 2019)
- Transverse strain response measured under magnet-relevant conditions no J_c degradation up to $\sim 150 180$ Mpa (Troitino 2021).

... and are well-understood:

- Strain response is well-described and quite predictable (Ekin 2016)
- It is intrinsically related to the interplay between lattice disorder (Mentink 2017) and the electronic DOS (Godeke 2018, Qiao 2019)
- It can, if needed, be further 'engineered' with internal reinforcements (Sugitomo 2021, Barzi 2019, Hishinuma 2018).

Conclusion: "The overwhelming lesson from the 30 years of Nb₃Sn development for ITER is that the issue is not the strand production, but the strand use" (Mitchell 2020)

Transv. stress response RRP strand

A-priori axial strain response vs. data

Literature survey 2015-2021^(*)

Important body of data collected mechanical behavior cable stacks ...

- Overall stiffness impregnated stacks (Wolf 2019a); evolution geometry during HT (Durante 2016, Rochepault 2016)
- Local probes: n-diffraction loaded stacks (Wolf 2019b); X-ray tomography & contact imaging (Wolf2018)
- Effect of RT pre-loading (Ebermann 2018) and of cable uniformity (Fleiter 2018) on critical current;

... and applied in coil modelling

- Strain distribution in impregnated stacks (Nunio 2019) and winding pack (Martins Araujo 2020)
- I_c & thermal margin prediction (Vallone 2021);
- Strain development during quench (Troitino 2020).

Wolf 2019a
Impregnated stack for RT testing

FEM modelling stack response

Nunio 2019

Critical current cables vs field and transverse pressure in FRESCA (Duvauchelle 2018)

- Long-sample;
- Precise $B_{c2}(\sigma)$ analysis;
- RT stress-adjustment.

 B_{c2} response RRP cable

Peak Field (T)

Sample holder

50mm

P. Gao PhD thesis UTwente 2019

B_{c2} response RRP cable

Critical current cables vs field and transverse pressure in *UT press* / transformer

(Gao 2020)

- In-situ stress variation;
- Ease of mechanical and/or thermal cycling;
- Short sample.

- Critical current affected by pressure
- Reversible reduction due to lattice deflection, some 10-20% at 150 MPa!
- Irreversible reduction due to copper yielding, changing Nb₃Sn pre-stress state, significant > 100 MPa
- Irreversible damage, filament cracking
- Starts at some 150-200 MPa.

Note: measured with pressure uniformly applied, in real coil not the case, thus worse to expect.

- ✓ Transverse pressure of some 150 MPa OK in <u>perfectly</u> impregnated cables, but I_c then some 10-20% less, eating from the margin, thus reduced stability!
- ✓ Strand and cable mechanical optimization possible to some extend, not more, hitting a principle limit for non-reinforced Rutherford cables!

Benchmarking I_c response

Benchmarking I_c response

The non-ideal world in cable measurements: Imperfect parallelism (0.2°)

Correcting action: 2nd "alignment" impregnation

The non-ideal world in magnets: post-mortem on dipole coils (Sgobba 2021)

4.1 Stability versus I/I_c – The 'stability cliff'

- Operate cable at operating point I/I_c not too high.
- I_c is of the cable after manufacturing (cabling degradation, may be 5%) and fully loaded at 150-200 MPa (-10 to 20%); so effectively at some 75 to 80% of the wire I_c (only).
- To profit from collective strand stability, be on left side of the kink, to get robustness and be less susceptible to wire motion and resin cracking!
- The transition is characterized mainly by single strand level (heat capacity) and the "kink value" of I/I_c.
- Systematically all factors determining i_{kink} were investigated experimentally and verified by simulation (CUDI).
- Key factors are C_p (added high C_p material or sf He in cable); cooling with sf He and inter-strand contact resistances!

We probably can't base a large series production of long magnets on a design relying on single strand stability... have to accept the consequences.

4.1 Stability versus I/I_c – The 'stability cliff'

- Using collective cable stability yields a factor 10 to 50 in MQE!
- For NbTi@1.9 K, sf-He inside, *needs margin* to profit from collective strand stability, ---> I/I_c<0.75.
- Impregnated Nb₃Sn is well in "single strand regime" when at some > 75% on load line! Need to reduce I/Ic down to < 0.45 to profit again, and this cost €€€.
- Convincingly, we see the same in impregnated NbTi 1.9
 K, "lost" stability, need I/I_c less than some 0.45!

Cure? what to do!

- 1. Keep impregnated cables, but reduce I/I_c to some 0.45; cost a lot to buy this robustness, but what else?
- 2. Increase heat capacity of the conductor by adding high C_p material (brings something, but not enough).
- 3. Bring sf He heat sink and cooling back in the conductor, make a porous cable or use a Cable-in-Conduit.
- 4. Drastically reduce inter-strand contact resistance, strand coating, porous metal filler, solder.
- 5. A well-balanced combination of 1 to 4!
- 6. Much more cable stability tests and simulations needed to master this key problem.

4.2 Example of enhancing stability – boosting Cp

High C_p material (e.g. Gd_2O_3 or Gd_2O_2S) can be added to (Xu 2019, Barzi 2020 & 2021):

- strand (replacing filaments) or as a coating
- in the cable (core strip, wrap, replacing strands)
- in winding blocks (wedges)
- as interface to coil structure (cover sheets)
- as nm-powder filler in resins for impregnation.

Wire with GdO filaments, cable with wrap, GdO tape

Barzi 2021

MQE gain with loaded wire, FNAL.

✓ Proof of principle delivered, worth to develop and do extensive MQE stability tests on range of cables.

4.3 Reducing training – BOX, a new benchmark

- Extensive studies required to understand training vs bonding (surfaces resin insulation cable)
- Building small R&D magnets too expensive and time consuming, looking for a smarter way
- PSI developed with UTwente a facility called BOX for fast turn-around testing of samples at representative stress and strain conditions
- Serpentine with 7 straight section in high field (B x Ic) $_{max}$, pulling/pushing on cable, VI taps, acoustic sensors
- First 3 Boxes recently done, "magnet-like" training curves seen, improvements visible, promising technique!

- Seems to work very nicely
- Some 20 BOX samples with variations waiting.....

5. Conclusion

- Key issues for Nb₃Sn in high-field accelerator magnets are proper J_c, robust stability and no/little training.
- Critical current reduction by transverse stress is understood in terms of lattice deformation (reversible), changing pre-strain state (not reversible), and filament cracking (degradation), determined by wire layout and composition.
- When assessing magnet performance, the I_c of the mechanically loaded strands must be taken into account (some 70-85% of virgin wire I_c at 150-200 MPa).
- For allowing series of full-size magnets, the stability & training issue must be solved to get robustness, allowing practical production tolerances and sufficient yield.
 Accepting comfortable margin seems hard, but is an investment.

6. References (1)

➤ Mentink 2017

➤ Mitchell 2020

)	➤ Ballarino 2021	The CERN FCC Nb ₃ Sn conductor development program, Status and Achievements, CERN HFAM workshop April 2021 https://indico.cern.ch/event/1012691/		
)	➤ Barth 2018	Quantitative correlation between the void morphology of Nb-Sn wires and their irreversible critical current degradation upon mechanical loading, Sci. Rep. 8:6589		
7	Barzi 2019	Measurements and Modeling of Mechanical Properties of Nb ₃ Sn Strands, Cables, and Coils, IEEE Trans. Appl. Superc. 8401808		
)	➤ Barzi 2020	Heat Diffusion in High-Cp Nb ₃ Sn Composite Superconducting Wires, DOI 10.3390/instruments4040028		
)	➤ Barzi 2021	Test of superconducting wires and Rutherford cables with high specific heat, DOI 10.1109/TASC.2021.3069047		
)	Collings 2017	Interstrand Coupling of LARP High Gradient Quadrupole Cables in Response to Variations in Cable Design and Heat Treatment, IEEE Trans. Appl. Sup. 0601305		
7	Daly 2018	Multiscale Approach to the Mechanical Behavior of Epoxy Impregnated Nb ₃ Sn Coils for the 11 T Dipole, IEEE Trans. Appl. Superc. 4007706		
)	Daly 2021	BOX, a new benchmark facility for study and mitigation of interface-induced training in accelerator type high-field superconducting magnets, submitted to SUST		
)	Durante 2016	Geometrical Behavior of Nb ₃ Sn Rutherford Cables During Heat Treatment, IEEE Trans. Appl. Superc. 4802705		
)	Duvauchelle 2018	Critical Current Measurements Under Transverse Pressure of a Nb ₃ Sn Rutherford Cable Based on 1 mm RRP Wires, IEEE Trans. Appl. Superc. 4802305 (2018)		
)	Ebermann 2018	Irreversible degradation of Nb ₃ Sn Rutherford cables due to transverse compressive stress at room temperature, SUST 065009		
)	➤ Ekin 2016	Unified Scaling Law for flux pinning in practical supercond.: II. Parameter testing, scaling constants, and the Extrapolative Scaling Expression, SUST 123002		
)	Fleiter 2018	Characterization of Nb ₃ Sn Rutherford Cable Degradation Due to Strands Cross-Over, IEEE Trans. Appl. Superc. 4802205		
)	Gao 2019	Transverse pressure effect on supercond. Nb ₃ Sn Rutherford and ReBCO Roebel cables for accelerator magnets, PhD thesis UTwente DOI 10.3990/1.9789402816587		
)	Gao 2020	Transverse-pressure susceptibility of high-Jc RRP and PIT types of Nb ₃ Sn Rutherford cables for accelerator magnets, SUST 125005		
)	Godeke 2018	Fundamental origin of the large impact of strain on superconducting Nb ₃ Sn, SUST 105011		
)	d'Hauthuille 2017	Numerical Stress Analysis during Cooldown and Compressive Loading in an Imperfect Nb ₃ Sn Wire Fusion Sci. Technol. 72 434		
)	➤ Hemmi 2017	Evaluation of Bending Strain in Nb ₃ Sn Strands of CIC Conductor Using Neutron Diffraction, IEEE Trans. Appl. Superc. 4200905		
7	Hishinuma 2018	Changes of Superconducting Properties Due to the Unidirectional Tensile Deformation on Bronze-Processed Nb3Sn Multifilamentary Wires Using Various Cu–Sn–Zn Ternary Alloy Matrices, <i>IEEE Trans. Appl. Superc. 6000704</i>		
7	Jin 2017	Residual Stress in Nb ₃ Sn Superconductor Strand Introduced by Structure and Stoichiometric Distribution After Heat Treatment, IEEE Trans. Appl. Superc. 6000909		
)	Liu 2015	Comparison of Critical Current vs Axial Strain Measurements on Internal Tin Nb ₃ Sn Strand at ASIPP and University Twente, IEEE Trans. Appl. Superc. 8400504		
)	Liu 2018	The Influence of Dispersedly Distributed Cracks on Critical Current of the Nb ₃ Sn Strand J. Superc. Nov. Magn. 31 1323		
7	Martins Araujo 2020 Electro-mechanical modelling of the iron force distribution with superconducting magnets, Cryogenics 108 103082			

The use of Nb₃Sn in fusion: lessons learned from the ITER production including options for management of performance degradation, SUST 054007

The effects of disorder on the normal state and superconducting properties of Nb3Sn, SUST 025006

6. References (2)

➤ Nunio 2019	3-D Mechanical Finite Element Analysis of Impregnated Rutherford Cable Stacks, IEEE Trans. Appl. Superc. 4802306
> Osamura 2019	Local strain / stress and their influence to mechano-electromagnetic properties of in composite superconducting wires, doi.org/10.9714/psac.2019.21.2.001
> Qiao 2019	An intrinsic model for strain tensor effects on the density of states in A15 Nb ₃ Sn, Cryogenics 97 50
Rapper 2014	Thermal stability of Nb3Sn Rutherford cables for accelerator magnets, PhD thesis UTwente DOI 10.3990/1.9789036536578
> Rochepault 2016	Dimensional Changes of Nb ₃ Sn Rutherford Cables During Heat Treatment, IEEE Trans. Appl. Superc. 4802605
> Scheuerlein 2017	Residual strain in the Nb ₃ Sn 11T dipole magnet coils for HL-LHC, SUST 125002
Seeber 2019	Reduced strain sensitivity of the critical current of Nb ₃ Sn multifilamentary wires, <i>J. Appl. Phys.</i> 126 203905
➤ Sgobba 2021	Advances in imaging and diagnostics, CERN HFAM workshop April 2021 https://indico.cern.ch/event/1012691/
Sugitomo 2021	Development of high-performance Cu-Nb/Nb ₃ Sn wires for various high field magnets, DOI 10.1109/TASC.2021.3066131 (2021)
Suwa 2018	Evaluation of Thermal Strain Induced in Components of Nb ₃ Sn Strand During Cooling, IEEE Trans. Appl. Superc. 6001104
➤ Ta 2015	A 3D Model on the Electromechanical Behavior of a Multifilament Twisted Nb ₃ Sn Superconducting Strand, J. Superc. Nov. Magn. 28 2683
Takahashi 2017	Internal Strain Measurement for a Nb ₃ Sn Rutherford Cable Using Neutron Diffraction, IEEE Trans. Appl. Superc. 8400104
Troitino 2020	On the mechanical behavior of a Nb ₃ Sn superconducting coil during a quench: 2D FEA of a quench heater protected magnet, Cryogenics 106 103054
Troitino 2021	Effects of the initial axial strain state on the response to transverse stress of high-performance RRP Nb ₃ Sn wires, SUST 035008
➤ Vallone 2021	A methodology to compute the critical current limit in Nb ₃ Sn magnets, SUST 025002
Wang 2015	Validation of Finite-Element Models of Persistent-Current Effects in Nb ₃ Sn Accelerator Magnets, IEEE Trans. Appl. Superc. 4003006
Wang 2016	Tensile Behavior Analysis of the Nb ₃ Sn Superconducting Strand With Damage of the Filaments, IEEE Trans. Appl. Superc. 6000304
➤ Wesche 2020	Estimation of performance of Nb ₃ Sn CICC with thermal strain distribution, J. Phys.: Conf. Ser. 1559 012106
Willering 2009	Stability of superconducting Rutherford cables for accelerator magnets, PhD thesis UTwente DOI 10.3990/1.9789036528177
➤ Wolf 2018	Characterization of the Stress Distribution on Nb ₃ Sn Rutherford Cables Under Transverse Compression, IEEE Trans. Appl. Superc. 8400106
Wolf 2019a	Effect of Epoxy Volume Fraction on the Stiffness of Nb ₃ Sn Rutherford Cable Stacks, IEEE Trans. Appl. Superc. 8401006
➤ Wolf 2019b	Effect of Applied Compress. Stress and Impregn. Mat. on Internal Strain/Stress State in Nb ₃ Sn Rutherford Cable Stacks, IEEE Trans. Appl. Sup. 8400605
➤ Xu 2019	Development and Study of Nb ₃ Sn Wires With High Specific Heat, IEEE Trans. Appl. Superc. 6000404
➤ Xu 2021	Nb ₃ Sn conductors with artificial pinning centers, CERN HFAM workshop April 2021 https://indico.cern.ch/event/1012691/
<i>≻ Zhai</i> 2016	Finite-Element Analysis of Transverse Compressive and Thermal Loads on Nb ₃ Sn Wires With Voids , IEEE Trans. Appl. Superc. 8401405