EIC All-Silicon Tracker: challenges in the development of the power system

EIC group meeting May 18, 2021

Alberto Collu

Outline

- Considerations on power system development for MAPS detectors
- The ALICE ITS-2 development
- EIC tracker powering options technical note
 - General information
 - Document structure
 - Detector/power system requirements
 - Assumptions on sensors/modules
 - Powering options (Fixed voltage DC-DC converters, Serial powering)
 - Preliminary material budget estimations and development time

Main power system requirements

Ability to work in magnetic field

Limits range of suitable technologies (e.g. can only use air core inductors)

Radiation hardness

- Total Ionizing Dose (TID), Non-Ionizing Energy Loss (NIEL), Single Event Effects
- Implies extensive testing and/or adoption of rad hard by design technologies

Electrical

- Voltage stability: affects sensor operation and performance
 - fake-hit rate, detection efficiency
- Granularity, connection topology, grounding

Material budget

Also affects material budget of mechanical support

Other:

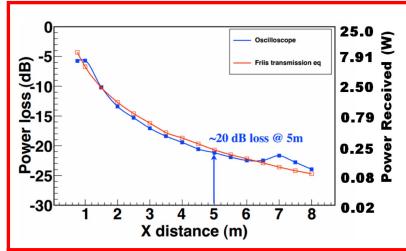
Interface to various systems (RDO board, safety systems, ...)

Challenges

General trends in high energy nuclear physics experiments:

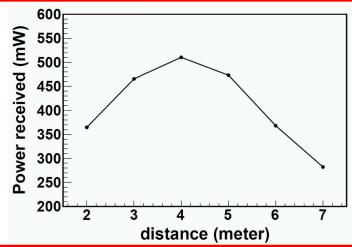
- Increasingly higher luminosity
 - higher data rate / higher power required
 - harder to find/design suitable radiation hard components
- Increasingly more stringent material budget/coverage requirements
 - harder to deliver stable power at the detector

Above trends more a problem for power system than readout system:


- Reducing material budget not necessarily incompatible with higher RDO rate
 - Reducing cable cross section/distance benefits impedance (although not resistance)
- Reducing material budget conflicts with increasing currents

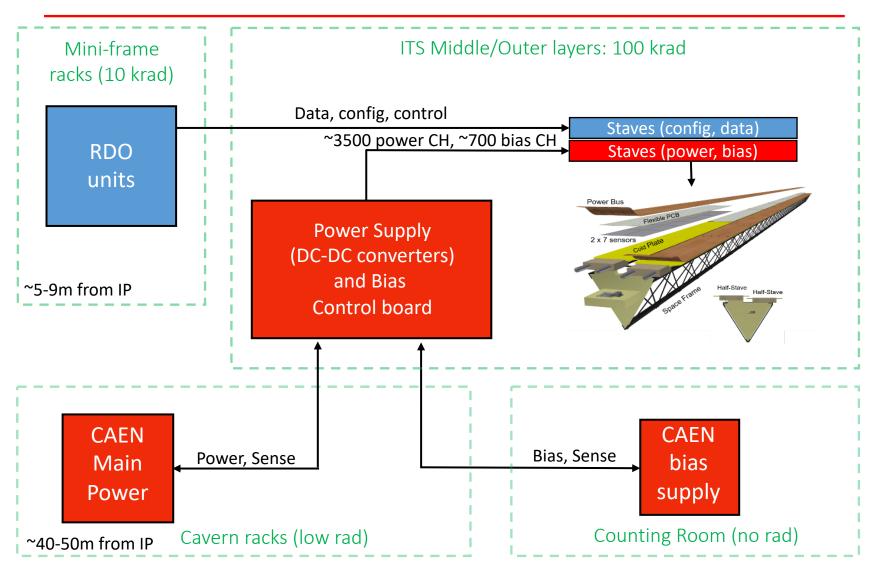
Transporting power to/through the detector primary issue:

- Done using cables of various types (wires, FPCs, ICs), usually bulky
- Voltage conversion as close as possible to the sensors benefits material budget
 - Highly reduced cable cross section, although at the cost of using additional circuitry
 - Trade-off with radiation hardness requirements


Wireless power transmission?

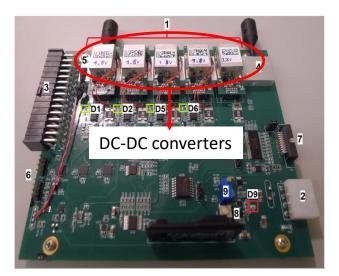
- Efficient power transmission not possible at large distances (~meter) from transmitter
- Technology suitable for short distances where cables/connectors are not an option

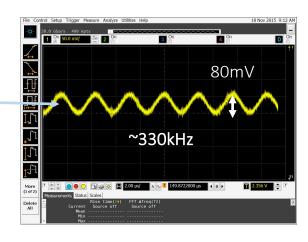
RF transmitter-receiver (multi-directional)


- Power loss (dB) in the RF power transmission as a function of distance (m) from the source (25W).
- Allows crossing obstacles but it provides very low power efficiency (~1/d²)

Optical transmitter-receiver (uni-directional)

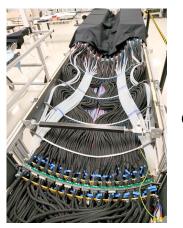
- Power received (mW) by a photovoltaic panel as a function at distance (m) from an optical source (3.5W LED @940nm + focusing lens)
- More efficient power transfer, however it cannot be used where there are obstacles


ALICE ITS-2 initial architectural scheme


Power system TID: 100 krad at least Power system must work in 0.5 T magnetic field

ALICE ITS-2: voltage generation

First PB design based on CERN FEASTMP DC-DC converters: high conversion efficiency, high rad hardness



Yield issues in FEASTMP later found by the CMS collaboration. Fixed in new version (late for ALICE ITS-2)

Switched to regulators:

- No testing in magnetic field required
- Low power efficiency
- Large section, heavy cables

High mass power cables at $|\eta| \sim 2.5$

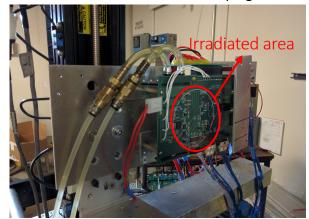
Radiation testing at the LBNL 88" Cyclotron (BASE)

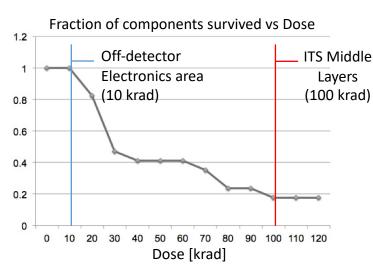
ALICE ITS Readout and Power System commercial-off-the-shelf (COTS) components

Four campaigns: April 2016, October 2016, June 2017, March 2019

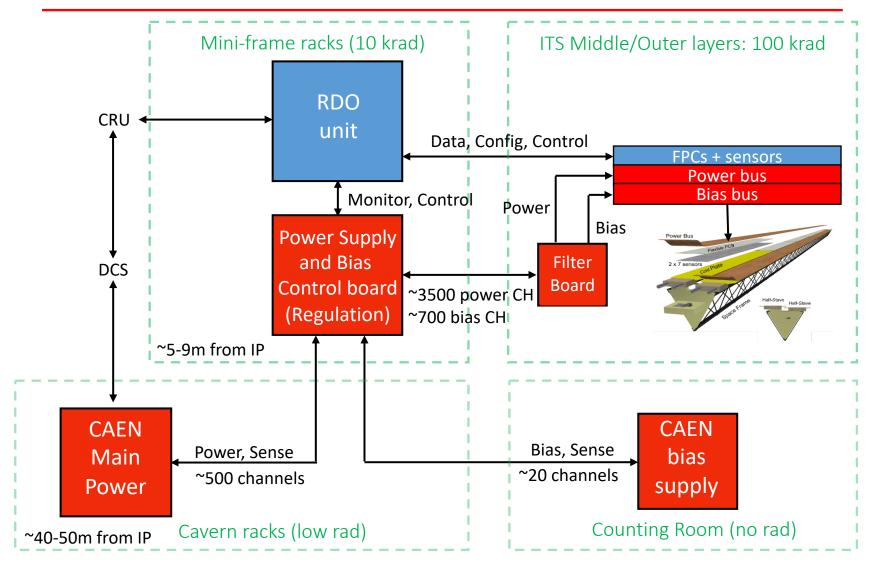
BASE 2016 beam test campaign

Beam:

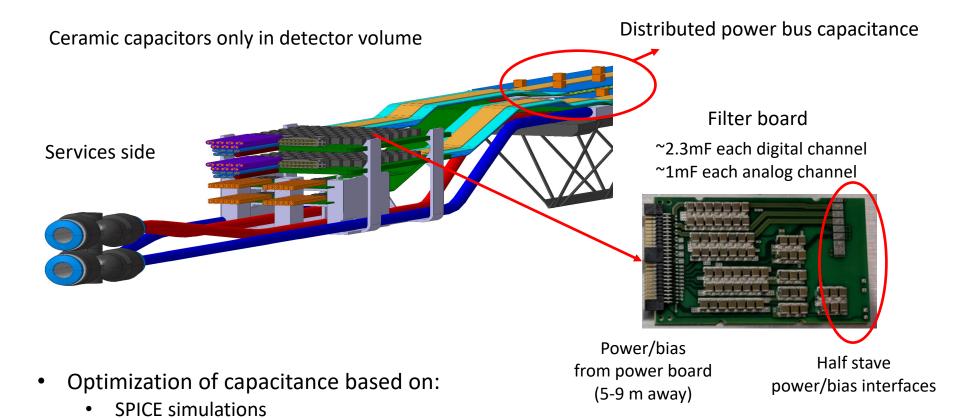

- Particles: 55 MeV Protons (can penetrate thick packages)
- Typical flux: ~10⁸ cm⁻² s⁻¹, attenuated if needed
 - ~100 krad in Si in 1h at the Cyclotron
 - Also integrated ~10¹² 1 MeV n_{eq} cm⁻² NIEL


COTS tested:

Switching DC-DC converters, regulators, ADC, DAC,
 Negative voltage regulators, switches, I2C isolators, ...


Results:

- Somewhat pessimistic, annealing observed
- Most tested COTS do not work past 100 krad
- Components with large transistor structures are more sensitive (larger gate oxide, e.g. voltage regulators)



ALICE ITS-2 power system scheme

Readout and Power systems TID: 10 krad TID at least Readout and Power systems must work in 0.5 T magnetic field

End of stave decoupling

Large amount of capacitance on filter board required to:

Testing with prototypes of modules

- Damp voltage oscillations due to sudden variations in current consumption
- Provide sufficient decoupling to reduce ground bounce/rail collapse upon data transmission

EIC tracker powering options technical note: general information

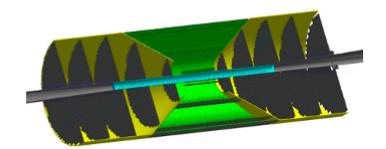
Purpose of the document

- Explore the range of available powering options for a EIC all-silicon tracker
- Determine material budget figures for each configuration

Approach

- Not detailed concerning the underlying technologies
- Mainly oriented toward determining:
 - Material budget vs granularity trade-offs
 - Material budget improvements as compared to state-of-the-art developments

Link


https://www.eicug.org/web/sites/default/files/Powering-options-for-an-EIC-silicon-tracker.pdf

EIC silicon tracker requirements

Requirements that are most relevant to the studies included in the document

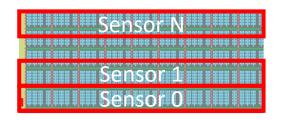
Detector geometry from YR

- 6 layer barrel (~7.5m²)
- 10 disks (~4.5m²)

Material budget per layer (from Leo's calculations)

- IL: 0.1% X₀
- ML, OL: 0.55% X₀
- Disks: 0.24% X₀

Other requirements

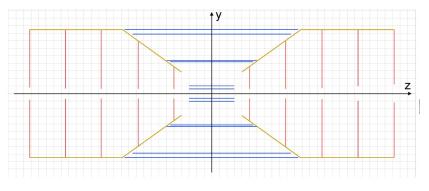

- Magnetic field: up to 3T
- Electrical: input voltage @ 1.2V +/-10%
- Radiation hardness requirements (TID, NIEL, High LET fluence, ...)
 - TBD but expected to be lower than ALPIDE sensor radiation hardness specs

Assumptions on sensors/modules

Module dimensions: 300 mm x 30 mm

Each module is made of N sensors (N depends on yield)

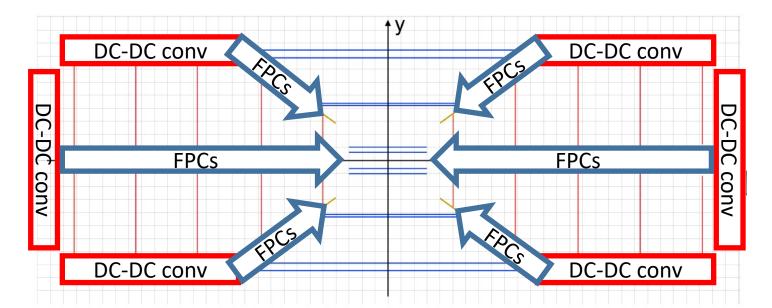
All modules powered at 1.2V +/- 10%



Current figures:

- Digital current: 0.5A (~50% of that of an ALICE ITS-2 module), due to:
 - ~Similar functionality as ITS-2, improved architecture
 - Reduced input voltage 1.8V → 1.2V
 - Reduced gate capacitance
- Additional digital current pessimism: 0.15A
- Analog current: 0.2A (~same as ALICE ITS-2 module)

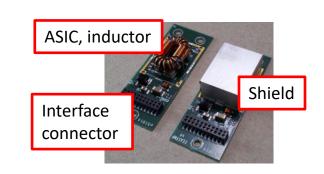
Central Barrel (~7.5m²): ~830 modules

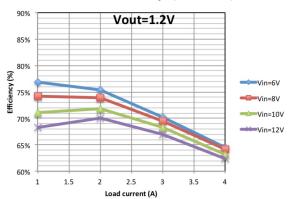

Disks side A (\sim 2.25m²): \sim 250 modules

Disks side B (\sim 2.25m²): \sim 250 modules

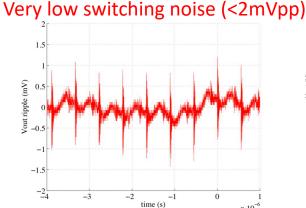
Based on the use of DC-DC converters near the detector volume

- DC-DC converters are bulky:
 - PCB + ASIC + inductor + metallic shield + ...
 - A large number (O(1000)) of DC-DC converters is required to power a 12m² tracker
- Assumes that the detector is powered from both sides
- Flexible Printed Circuits (FPC) to connect DC-DC converters to detector through gaps
- Location and architecture of DC-DC converter circuitry dependent on:
 - Available space, radiation hardness requirements, material budget requirements, ...

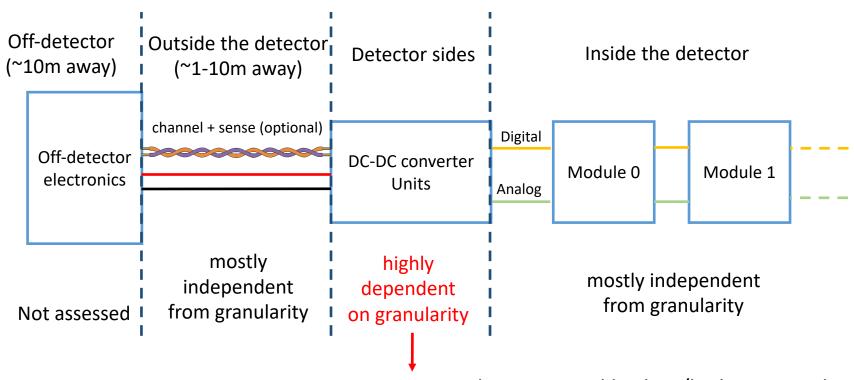



DC-DC circuitry on detector sides kept as simple as possible

- Segmented into independent units each powering a set of sensor modules
- Each unit: DC-DC converter(s) + current sense(s) + passive components/connectors


Baseline DC-DC converter CERN FEASTMP. Bulky but:

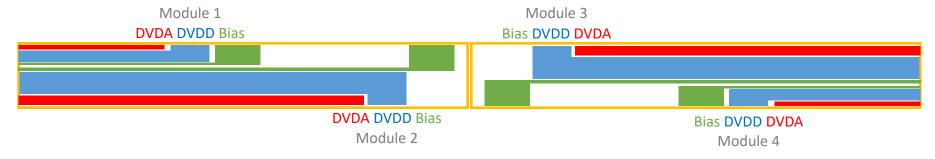
- Testing for radiation hardness and in magnetic field not needed:
 - 200MRad TID by design
 - Works in > 4T magnetic fields
- Will work with sensors in TJ 65nm technology
 - Output voltage range 0.9-5V
 - Max output current 4A
 - Input voltage range 5-12V



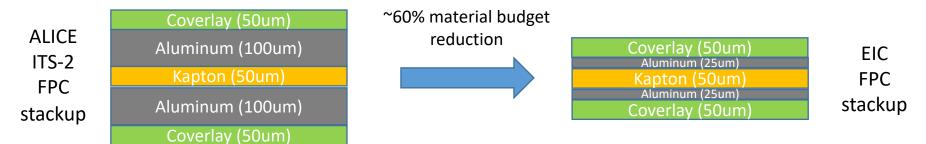
Good efficiency (> 60%)

Material budget impacted by granularity in different ways at different locations

Lowest material budget/lowest granularity 4 modules fully powered from a single DC-DC converter:


Disks: ~125 DC-DC converters Barrel: ~210 DC-DC converters Total PCB area: ~1.25m² Highest material budget/highest granularity
Digital and analog powered independently for each module
(ALICE ITS-2-like configuration):

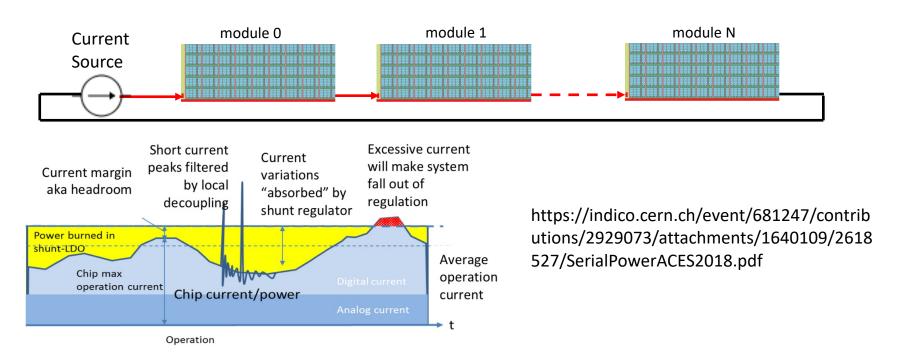
Disks: ~1000 DC-DC converters Barrel: ~1700 DC-DC converters


Total PCB area: ~3m²

Example implementation of an EIC tracker outer layer stave FPC

- 4 modules
- 2 FPCs back-to-back, powered from the forward and backward regions
- Allows for a lower number of metal traces per FPC as compared to ITS-2
 - wider and shorter metal traces, hence lower material budget
- Traces with equalized voltage drops → Identical and fixed voltage DC-DC converters

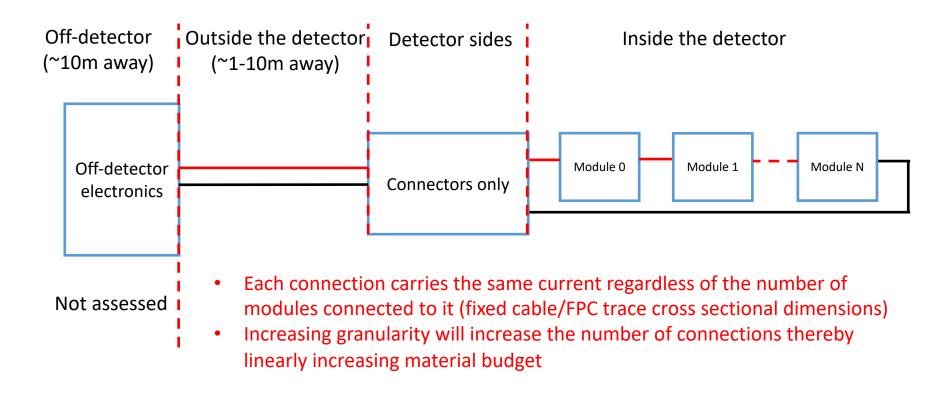
Factoring in the projected current figures for ITS-3-like sensors



More dramatic improvements can be achieved by integrating data/config FPC with power FPC

Serial powering option

Main features:


- Modules are connected in series $(GND_{N-1} \rightarrow VDD_N) \rightarrow Reduced number of FPC traces$
- Constant chain current forced by current source (off-detector)
- Shunt LDOs integrated in each module drain excess current (I_{chain} I_{module})

- A serial powering scheme currently in use in the ATLAS experiment inner tracker
- New powering circuits/schemes under development within the RD53 project

Serial powering option

Material budget scales "linearly with granularity

Material budget figures and development time

	Material budget (as a percentage of reference: ALICE ITS-2)			
	Analog/digital/gro und cable mass (outside detector volume)	PCB surface (detector sides)	FPC power bus material budget (inside detector volume)	Development time
ALICE ITS-2 architecture (ITS-3 sensor modules)	50%	100%	~66%	~1.5 years
DC-DC converters	3.125% - 6.25%	87% - 208%	~40%	~1.5 years
Serial powering*	8% - 32%	5% - 20%	~30 - 40%	~5 years

^{*}assumes 10% max voltage drop across cables + FPC traces

Fixed voltage DC-DC converter option could be the baseline:

• Easier implementation, independent from sensor development, DC-DC converters available Serial powering enables further reductions of material budget in/near detector volume