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Introduction
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Introduction

Motivation

*Source: Albany project

**Source: AC 22.9 kV HTS cable @Icheon substation ***Source: Japan Renewable Energy Foundation
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= The brittleness of the HTS material

= A greatincrease in resistance when a quench occurs
« Relatively long recovery time (about 80 hrs.)
 Power shortages due to failures of the large-scale HTS electric power system

= Along with the commercialization of HTS cable systems, needs for HTS cable diagnosis
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Introduction

Overview
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Validation in Laboratory Environment Demonstration on Distribution Lines
Implementation of Time-Frequency Based Anomaly Detection and Condition Monitoring of

Insulation Diagnostic Technique an AC 22.9 kV Distribution HTS Cable System
for HTS Cable at Icheon Substation

* Implementation of reflectometry * Unbalanced current and Heat detection
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Theoretical Background

Reflectometry

[ d (Incipient Defect)

» Transmitted Signal Malfunctioning Cooling System or
Deformation of Wire
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Distance f L =

= The localized impedance change
*Defects from segments of HTS cable
*Cryogenic failures

= Detection technique based on the reflection of waves at the impedance discontinuity
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Theoretical Background

Time Domain Reflectometry & Frequency Domain Reflectometry

TDR* FDR**
Beginning of Cable
0

2l
s Beginning of Cable 10 / /
16
14) 20 EXpeCted End of Cable
B Defect
&
:, 2 %
08 / End of Cable
0s Expected | i
04 Defect
0.2/ 1
ONMJA - -— - - v . v y =
-2 0 2 4 6 8 10 12 14 16 60
Distance (m) o 5 19 »
Distance (m)

-l i e

Cable section with defect

v Cable Type: RG-58
v Cable Length: 15 m
v Defect Location: 10 m
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Theoretical Background

Time Domain Reflectometry & Frequency Domain Reflectometry

: . Beginning of
Indent and Reflected Signal
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(TDR) 05 Expected Defect End of Cable
Time > —~—
= Localized B \ 4 r\
© Reference Signal -
Do .? 0.5
9 ~
g g DD: — it -2 ) 2 N 3 s o 2 w w
g ow Localized “““Hw\"\'l'; * Distance [m] *
ook Reference Signal /]!’ 5 Correlation Val
2%
(T2 08
g . Expected Defect
-

Frequency > 04
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Reference Signal < 02
Frequency Domain o

Reflectometry ) Distance [m]
(FDR)

= The new methodology which has advantages of both TDR and FDR
*Analysis on both time domain and frequency domain
*Time-frequency cross-correlation value

= The methodology considering physical characteristics of HTS cable
*Optimization of the reference signal
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Theoretical Background

TFDR System

Extension Lead (Core) Arbitrary Waveform Generator

Frequency

Incident Signal
A <« <
i Time Duration (T): i " Instrument Control |
______________ s i E _ Reflected Signal _—_— GPIB |
) = Connector Slgn_a' Signal
§ < B w/ Teflon Cable ==ml T-Connector Processing
L e = 2 'g é Reflectad = System
o= = Extension Lead  Signal
&g ] GPB |
....... CHE e e et Coa
: - . o ‘ \ i Digital Phosphor Oscilloscope ~ e2eured Siana!
t;) Ti me ) 40 20 “J‘ 0 . 2 © ‘ 80 @ \60 120 : lbﬂ“ ‘;ﬂ
Wigner Ville Distribution The Diagram of TFDR System
I
= Time-frequency analysis: Wigner Ville distribution
= Up-chirp signal / Down-chirp signal
= Attenuation and dispersion of propagated signal
| |

TFDR system: AWG, DPO and signal processing system
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Validation in laboratory environment

Design of Reference Signal

W,(t, w) W(t -ty w)
Incident signal for TFDR

Frequency
=
|
Y
g
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a, Frequency/time offset
IFs (t -t w)

2 )2 ) 1
ow = & +/) ot = (/#
@ o
ts tr Time ts b Time
Up—chirp signal Down—chirp signal

|
= Corresponding attenuation and dispersion characteristics are significantly different in comparison to
those of a conventional cable

= Motivation for the use of up & down chirp signals
» 3 determines the rate of increase/decrease

= Attenuation and dispersion cause frequency/time offset
« Solution: the use of arithmetic mean
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Validation in laboratory environment

Experimental Setup

Arbitrary Waveform Instrument Control R

ckiont Sgns Generator r—— . : foneon ST " Shleldirig Layes

s Signal Processing

......... i System

v
|| Digital Phosphor L ]
Oscilloscope
1 g PO - =

V0|d/ ‘

5 mm A —— LNZ
Former g
Insulation (PPLP) \

Conducting Layer

J Measured Signal

HTS Cable

Reflected Signal

42m

B HTS cable’s local insulation fault.
Experimental setup for HTS cable dlagnostlcs

= A single-phase 22.9 kV/50 MVA HTS cable (1G) with a length of 7 m
» Solution: Conducting layer is used as an input port and shielding layer is used as a ground port

= PPLP is cut with dimensions of 30 mm X 30 mm X 5 mm at the 4.2 m point (Void)
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Validation in laboratory environment

Result: Comparison with TDR

0.9 . T T .
_——Beginning of =i - ]
0.8 * > ]
the HTS cable < = ]
0.7 g 2 Nl repere]
E Seer g i - 7]
0.6f Expected defect —0.8fk Reflected signal from fault ] —08t Reflected signal:from fault
%0_5 5 6 7 8 9 10 11 12 13 14 15 5 6 ¥ 8..9.10.M 12 13 14 15,
0 Time [sec] x40~ Time [sec] x 10
§ 0'4 End Of "-/. _ 1 T T T T '(b) T T T T T 1 T T T T I(b) T T T T T T
03+ the HTS cable g 0.8 I Ir_lcident ------- @ 300 K Reflected signal from ] 13') 08 [ncident /s @ 300K . Reflected signal from
g YOl signal™ = @77 K terminaly : S Tlsignars —) 77K § \.terminal |
02 5 d6¢ W i c 06f “\, ]
S - Reflected----#% 9 r Reflected
o L 0.41 signal | — § % : % 04r signali —
' EraamunarE N e For / Nwnwaf b\
0 1 2 3 4 5 6 7 8 5 6 7 8 _9 10 11 12 13 14 15 5 B ¥ 8.9 18 11 12 B M 18,
Distance [m] Time [sec] x 10 Time [sec] x 10
TDR result at ambient temperature TFDR results using up—chirp TFDR results using down—chirp

= TDR (Time domain reflectometry): without prior knowledge about the faults, it is difficult to detect the
fault location

= TFDR (Time-frequency domain reflectometry)
1. The detection and localization process can be automated in TFDR
2. Difference between the ambient temperature and the operating temperature
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Demonstration on Distribution Lines

Experimental Setup: AC 22.9 kV/50 MVA HTS Cable (2G) System

Source Termination Load Termination
! 7 (Delta) g

Cryogenic Refrigeration
System

L

Current Source :
Joint Box

HTS Cable #1 HTS Cable #2

m I
] ] ]
¥ ¥ ¥

229 kV HTS Cable
N\

Joint Box

®=§10.9 m

(PI Model)

P» Part-A : 267 m
o®Part-B: 150 m
® Pressure Sensor

Equivalent Circuit of Joint Box

Equivalent Circuit of HTS Cable #2
(PI Model)

@ Temp. Sensor £
'L hield ie
The diagram of the HTS cable system and the TFDR system g e T
%C heaty 2heath 5 hesth e heath%
— The diagram of the HTS cable system and the Pl model for EMTP

= 267 m of HTS cable, part-A, and 150 m of HTS cable, part-B are electrically connected by the joint box.

= Beyond the rated current — Unbalanced current / Heat

= Monitoring method to determine the problematic cable among three-phase cables and locate the fault
within the selected phase.
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Demonstration on Distribution Lines

Time-Frequency Phase Difference Spectrum
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%5 J ' si(zt) -
& - VP i wﬂ‘!‘!ﬂiﬂw 3 is defined by: . e~ Mkn(w+5)+kn(w-5)] - jo -1
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= ! v s2(z, . .
S 5 ‘-"!‘!Avw— . The wave number can be expanded in a power series
. 7 \J\ N of theta. Then, the approximation of CWVD is
Wﬂg,(,\', tLhw)= L 8—”()_-\Alk12(w)+k“(w)|
: : P " 2r k;Q((u) + k;’l(w)
o ' Lo 2(to+811) s
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T ' Propagated signal Wsi(z, ¢, f) . -e [ (Ws]_s'z(()-’- w)
g 2t I ------- [t =1 = 5 (Kjp(@) + Ky (w)) x]?
o 5 . e -exp|-2 —— dr’
r ropagated Signal Wsz(z, & f) 5. _1 [Im{Ws g, (x, 1, w)} kK (w) + k7 (w)
2(t0+872) _ 515, (X, 1, W) = tan = 2
Time " Re{leS:(.\’, t,w)}
lime—trequency representation ot incident signals i ki G,
which propagate through two different media Time-frequency phase difference spectrum

= Dispersion: different frequency components of the wave travel with different velocities
= Damping: consequence of the frequency-dependent attenuation of the wave in the conductive media
= Solution: Calculation of phase difference spectrum considering the wave number
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Demonstration on Distribution Lines

Experimental Results: Current Imbalance
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= An impractical task to catch variations in time domain
= Pressure is proportional to the density and the permittivity is also proportional to the pressure

=  Monitoring index responds to the current imbalance faster than the response of temperature
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Demonstration on Distribution Lines

Experimental Results: Cooling Process
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= Phase spectrum follows the pressure/Temperature change

=  Application of Transmission Lines
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Future works

Application of TFDR: Electrical Signal

2 {ot e 1. TFDR
’ T /‘ cct

Endpoar |

Arbitrary
Waveform
Generator

ol H1Sa h(

% Transmission Line

— Coax
- Parallel Plate
Cross section (dent)
2. TDR
‘ Lo r:
3 0
.g 08 I:I/,- (I'Hﬂl)e‘/k/
g 08 Time
H l (1+r
2 — -3j
A 7 m single-phase 22.9 kV/50 MVA HTS cable (BSCCO)  § °2 : (14T1)e 2T (1-T1) 2
(s} 0—; ° mz., : "“‘ F s (1+r1)e-4iklf22(-r\)
e — (1+F1)e'5fk/r2(_r1)2
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= HTS power cable: Response to temperature differences over 200K
= How about Transmission lines with magnets? it T (w) + Dy(w)e 2k
. . 1w) = G

« Temperature affects the insulation of cable. L+ () - Ta(w)em 2!

* Quench, deformation
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Future works

Application of TFDR: Acoustic Signal

@) Receiver1 A’ Permanentmagnet  “B" poceiver 2
*4“_ ) & ) . f’ﬁ
[ YBCO tape (1.2 m) Sender /'
Voltage tap LN2 bath Spot heater

Setup for differential acoustic detection*
— waves have bounced repeatedly
— Ring down

How can we send the signal we design?

Reference: Hongchen Miao et al 2017 Smart Mater. Struct. 26 025021

£ .. H e ' . ' . ' .
e T Pipe line diagnostics using torsional wave
~ — —~—

R — Symmetrically installed sensors

:i?;:;éf;auzlssi:z:mm of the experimental setup for excitation and reception of the 7(0, 1) mode on an aluminum pipe. (b) The photo of the —_ Shear m Ode P i ezo Sensor Can tran Sm it
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= Pipe-lines: longitudinal mode (L mode), flexural mode (F mode), and torsional mode (T mode)

= T mode advantages in that the propagation characteristics are nondispersive and are not influenced by the
presence of a liquid in the pipelines unlike the L and F modes.

*M. Marchevsky, E. Hershkovitz, X. Wang, S. A. Gourlay and S. Prestemon, "Quench Detection for High-Temperature Superconductor Conductors Using Acoustic Thermometry," in IEEE Transactions on Applied Superconductivity,
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Future works

Application of TFDR: Acoustic Signal

[Concept]
Eoent :wa 1. The use of shear mode piezo sensor (Electric <-> Acoustic)
. B 2. Design of the reference signal: Center Freq, Bandwidth, and Time
Refeoce amplifer | oscilloscope duration Considering length, material, eigen frequency
- "'”"—l i W 3. The receiver next to the transmitter is used for fault/quench

localization (Reflected signal)

4. The receiver opposite the transmitter is used to extract the monitoring
index (Transmitted signal)

1500 200 300 400
=1 Time [ps]

ae
1
17400 200 300 400  ° 100 200 300 400
Time [pts] Time [pes]

= The combination of shear mode sensors — Transmit the designed signal
= Notch in the HTS layer, CCT magnet mandrel
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