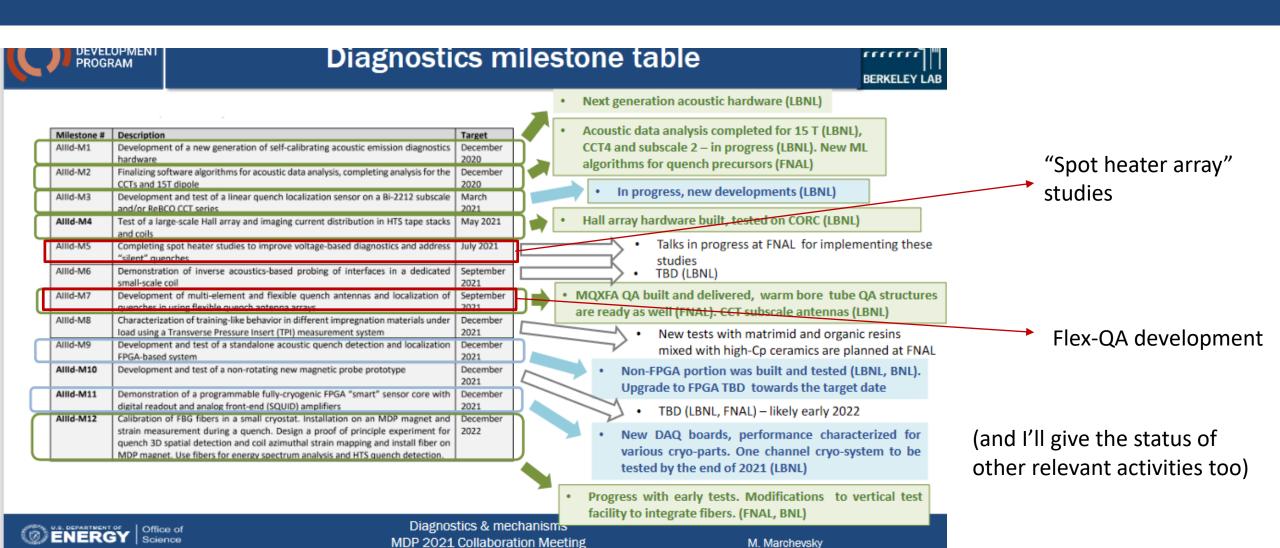


Instrumentation/Diagnostics topics - status

MDP Meeting June 9, 2021


Stoyan Stoynev

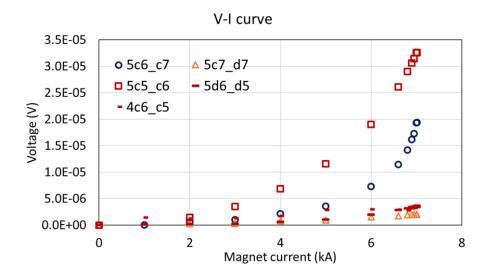
JS Magnet Development Program

Fermi National Accelerator Laboratory

US Magnet Development Program

Milestones

Tasks with listed Milestones


- Flex-QA (flexible PCB quench antenna) Joe DM, Stoyan, Tom C.
 - A version of the flex-QA was developed and procured (LDRD funds)
 - Boards were installed in a mirror magnet
 - The magnet is assembled (only partially with LDRD funds) and ready for testing but waiting for QCD project (LDRD) funds to complete the QCD itself
 - New designs with improved/extended features under development: so far delayed by 6-8 months due to lack of priority (LDRD funding available), getting there slowly
- "Spot heater array" studies
 - It is also a current sharing and other diagnostics experiment
 - A FNAL note written (as requested/strongly advised earlier)
 - An updated presentation with targets and narrative given
 - Discussion on next steps initialized with management
 - Waiting for stated support (and support)

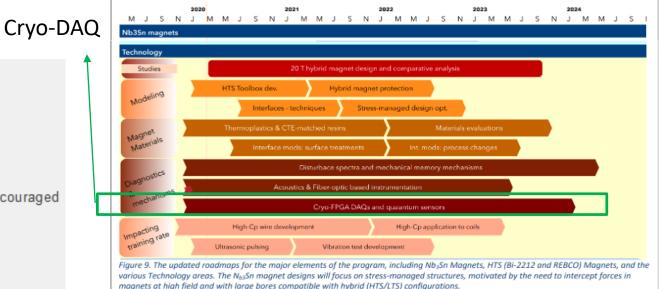
Other tasks

- V-I technique development Stoyan, Tom C. (Darryl O.)
 - First tests with borrowed multi-channel nano-voltmeter ("MUX")
 were successful in the "15 T"
 - We need much improved version of the MUX to accommodate our needs
 - Development of MUX started virtually all hardware procured
 - Further development halted due to lower priority status (we don't have an imminent magnet coming for testing) and insufficient resources
- Multichannel fast DAQ (for QA, etc.) Steve, Stoyan, (Darryl O.)
 - We upgraded hard-drives which were rate bottlenecks
 - We bought additional cards to get to 64+ differential channels
 - Tested functionality at this stage all good
 - Commissioning involves cabling and software development all planned
 - Work halted due to lower priority status (we don't have an imminent magnet coming for testing) and insufficient resources

V-I measurements for "15 T"

One of two NI-crates

6/9/2021


Other tasks (2)

- "Cold" electronics Steve, Stoyan, Ryan R., ... (just the FNAL side)
 - Currently waiting and arranging for electronics "cold" testing (Marcos (LBNL), Ryan R.)
 - Despite my personal believe that "cold" electronics is one of the most crucial subject for R&D development in instrumentation in our field we (magnet sector at FNAL) will not be able to contribute for its development beyond testing due to insufficient resources

THE Roadmap

Requirements/wish list (input from various people):

- at least 128 channels per (possibly network) cable connection
- at least 16 channels for one serial communication line
- fully differential input
- at least 250 kHz sampling per channel
- at least 24 bits in (-5 V, 5 V) signal range; preferably configurable
- another preferred option is the use of "cold" amplifiers with at least gain of 10
- separately development of isolation amplifiers for use at the above conditions is encouraged
 - differential input protection of 500 V in working conditions
 - 2 kV channel-to-channel, and channel-to-ground isolation in working conditions
- developed electronics should use less than 100 mW of power per channel
- the system should be able to start and operate in liquid helium

magnets at high field and with large bores compatible with hybrid (HTS/LTS) configurations.