

1

STAR BES-II Status and Analysis Plan

Helen Caines - Wright Lab, Yale - on behalf of the STAR Collaboration

$BES-I \rightarrow BES-II$

BES-I:

Hints that at low √s QGP turns off Ordered phase transition Critical Point

BES-II:

Focus in on regions of interest

Need higher statistics

Need to maximize fraction particles measured

Need lower energies

- Fixed Target (FXT) program
- electron cooling of beam

The BES-II Upgrades

Endcap TOF

Event Plane Detector

Enhanced Acceptance (p_T and y) Enhanced PID mid and forward Enhanced Event Plane Resolution Enhanced Centrality Definition Enhanced √s range

Low Energy Electron Cooling

All 3 detectors fully installed prior to start of BES-II

The fixed-target (FXT) setup

Gold Target:

- 250 µm foil
- 2 cm below nominal beam axis
- 2 m from center of STAR

Mid-rapidity for 3.0 GeV is y = 1.049

Original planning for the BES-II

Berndt Mueller's (ALD) proposed charge

We anticipate the 2019 RHIC run to constitute the first year of a twoyear high statistics beam energy scan.

The 2017 PAC assigned highest priority to proposed Au+Au runs at 11.5, 14.5, and 19.6 GeV, interleaved by brief fixed target runs at the same beam energies, as well as dedicated fixed target runs corresponding to CM energies of 7.7, 6.2, and 5.2 GeV. The PAC tentatively recommended Au+Au runs in the collider mode at 9.1 and 7.7 GeV during the 2020 RHIC campaign.

STAR should not simply take these tentative recommendations as a given, but reconsider and justify the prioritized set of beam energies and the requested accumulated statistics at each energy, assuming either 24 cryo-week runs or 20 cryo-week runs in each of the years 2019 and 2020

Helen Caines - Collab. meeting, LBNL Jan 2018

2

Then the pandemic hit

Zhangbu Xu (BNL)

Dan Cebra (UC Davis)

Rosi Reed (Lehigh)

Liz Mogavero (BNL)

Run-19 went very well

Run-20 halted in March

- lots of new safety protocols in place
- shift crew reduced and some remote
- minimal-to-no face-toface interactions

Were able to restart in the June - all planned data collected

Run-21 undertaken with similar restrictions as Run-20b

√s _{NN} (GeV)	Beam Energy (GeV/nucleon)	Collider or Fixed Target	Ycenter of mass	µ _В (MeV)	Run Time (days)	No. Events Collected (Request)	Date Collected	
200	100	С	0	25	2.0	138 M (140 M)	Run-19	
27	13.5	С	0	156	24	555 M (700 M)	Run-18	
19.6	9.8	С	0	206	36	582 M (400 M)	Run-19	
17.3	8.65	С	0	230	14	256 M (250 M)	Run-21	
14.6	7.3	С	0	262	60	324 M (310 M)	Run-19	
13.7	100	FXT	2.69	276	0.5	52 M (50 M)	Run-21	
11.5	5.75	С	0	316	54	235 M (230 M)	Run-20	
11.5	70	FXT	2.51	316	0.5	50 M (50 M)	Run-21	
9.2	4.59	С	0	372	102	162 M (160 M)	Run-20+20b	
9.2	44.5	FXT	2.28	372	0.5	50 M (50 M)	Run-21	
7.7	3.85	С	0	420	90	100 M (100 M)	Run-21	
7.7	31.2	FXT	2.10	420	0.5+1.0+ scattered	50 M + 112 M + 100 M (100 M)	Run-19+20+21	
7.2	26.5	FXT	2.02	443	2+Parasitic with CEC	155 M + 317 M	Run-18+20	
6.2	19.5	FXT	1.87	487	1.4	118 M (100 M)	Run-20	
5.2	13.5	FXT	1.68	541	1.0	103 M (100 M)	Run-20	
4.5	9.8	FXT	1.52	589	0.9	108 M (100 M)	Run-20	
3.9	7.3	FXT	1.37	633	1.1	117 M (100 M)	Run-20	
3.5	5.75	FXT	1.25	666	0.9	116 M (100 M)	Run-20	
3.2	4.59	FXT	1.13	699	2.0	200 M (200 M)	Run-19	
3.0	3.85	FXT	1.05	721	4.6	259 M -> 2B(100 M -> 2B)	Run-18+21	

iTPC: Enhanced acceptance

2.5

Successfully integrated into data-taking since day 1 of BES-II

Projected detector performance criteria met

Demonstrated improvement:

Increased pseudorapidity coverage Improved dE/dx resolution iTPC Run2019 (Plots normalized) iTPC Run2019 0.05 0.16 TPC Run2018 TPC Run2018 0.14 Resolution 0.04 0.12 0.1 0.03 0.08 0.02 gX 0.06 dE/ 0.04 8% 6.9% 8% 0.01 0.02 <u>0</u>2 -0.5 0 0.5 -1.5 1.5 1.5 -1.5 -0.50.5 2 0 1 η η

EPD: Enhanced event plane resolution

All tiles operational from Run-18 (pre-BES-II) $2.1 < |\eta| < 5.1$

BES-II: Main trigger detector Greater acceptance than VPD or ZDC Better timing resolution than BBC (0.75 ns)

Event plane (and centrality) outside of iTPC acceptance

NIMA 968 (2020) 163970

eToF - Joint STAR-CBM initiative

Proton acceptance comparisons

(GeV/

<u>√s_{NN} = 3 GeV FXT</u>

Data quality appears excellent

Reference Multiplicity

Dominance of QGP signal

Nuclear Modification $R_{AA}(p_T) = \frac{Yield(A + A)}{Yield(p + p) \times \langle N_{coll} \rangle}$ Factor:

Average number of p-p collisions in A-A collision

Compare to scaled p-p at same collision energy

Au+Au At higher beam energies √s_{NN} = 7.7 GeV - clear signs of "jet 11.5 GeV R_{CP} [(0-5%)/(60-80%)] 14.5 GeV quenching" in the medium 19.6 GeV 27 GeV 39 GeV 62.4 GeV N_{part} scaling $p_{(GeV/c)}^{5}$ 2 10 0 3 8 9 7

Dominance of QGP signal

Nuclear Modification $R_{AA}(p_T) = \frac{Yield(A + A)}{Yield(p + p) \times \langle N_{coll} \rangle}$ Factor:

Average number of p-p collisions in A-A collision

Compare to scaled p-p at same collision energy

Au+Au At higher beam energies $\sqrt{s_{NN}} = 7.7 \text{ GeV}$ - clear signs of "jet 11.5 GeV R_{CP} [(0-5%)/(60-80%)] 14.5 GeV quenching" in the medium 19.6 GeV 27 GeV 39 GeV "Standard" QGP signal 62.4 GeV only dominates above √s_{NN} ~ 20 GeV Less jets, radial flow and N_{part} scaling other effects dominant at 2 ¹p_(GeV/c)⁶ 8 9 0 3 10 lower beam energies **BES-II:** Precision to disentangle?

Precision mapping of phase diagram

Theory: Cross-over starts at $T_0 = 156.5 (1.5) \text{ MeV}$ $\epsilon_0 \sim 1 \text{ GeV/fm}^3$

Significant systematic errors from BES-I data

Now have BES-II and ~140 M top energy data with iTPC from Run-19

Reduce chemical fit uncertainty

- smaller extrapolation, higher efficiency

Test Flow models at low p_T (<0.5 GeV/c) with heavy particles

PRC **101** (2020) 24905 PRC **102** (2020) 34909 Patrick Steinbrecher QM18

Light nuclei and blast-wave fitting

Light nuclei p_T and rapidity distributions have been extracted Mid-rapidity blast-wave fits:

Light nuclei prefer slightly higher T_{kin} , lower β Combined fit to all particles successful

Different trend compared to higher $\sqrt{s_{NN}}$ - different EoS at 3 GeV?

Beyond mid-rapidity p_T spectra

Plan to report rapidity distributions from BES-II data

Better consistency with AGS E917 measurements

Baryon stopping systematics

Y. Ivanov, PRC87, 064904 (2013)

Change in total baryon number

Low Mass Region:

3 4 5 6 7 10

20 30

9.2

1.44. pert

2

20

0¹

iTPC: Significant reduction in sys. and stat. uncertainties

200

100

Collision Energy $\sqrt{s_{NN}}$ (GeV)

Disentangle total baryon density effects

p-meson broadening:

different predictions for di-electron continuum (Rapp vs PHSD) iTPC: Significant reduction in sys. and stat. uncertainties

Enables to distinguish between models for $\sqrt{s_{NN}} = 7.7-19.6$ GeV

Mee (GeV/c²)

Softest point in equation of state?

Directed flow, v_1 - attributed to collective sidewards deflection of particles $v_1 = \langle \cos(\phi - \Psi) \rangle$ Symmetry of collision requires $v_1(\eta) = -v_1(-\eta)$

ALICE: PRL 111 (2013) 232302

Softest point in equation of state?

Directed flow, v_1 - attributed to collective sidewards deflection of particles $v_1 = \langle \cos(\phi - \Psi) \rangle$ Symmetry of collision requires $v_1(\eta) = -v_1(-\eta)$ JAM 1.Opt: First order phase transition strong "wiggle" JAM X-over - Cross over weaker "wiggle" JAM - No transition no "wiggle" Calculations predict minimum in slope of directed flow of baryons in presence of 1st order phase transition

Softest point in equation of state?

PRL **112** (2014) 162301 Y.Nara et al. PLB 769 (2017) 543 ALICE: PRL **111** (2013) 232302

Evolution through phase transition?

Interferometry:

- R_{long} Longitudinal size
- R_{side} Transverse size
- Rout Transverse size +

emission duration

STAR data in combination with HADES results reveal long-sought peak in R²_{out}/ R²_{side} beam energy dependence

- Such a peak may occur if system evolves through 1st order phase transition

The magnitude and width of structure **may** allow an estimate of latent heat of QCD deconfinement transition

- more theory input needed

PRC 92 014904 (2015) PRC 103 34908 (2021)

Hints of critical fluctuations

κ/σ² BES-I: results published in PRL with details in PRC

PRL **126** (2021) 92301 PRC **104** (2021) 24902 arXiv:2105.14698

Hints of critical fluctuations

First measurement of net-proton C_6/C_2 at RHIC

27 & 54.5: Consistent with zero 200: Negative in more central collisions

 κ/σ^2 **BES-I:** results published in PRL with details in PRC Net-proton Cumulant Ratio C_{6}/C_{2} 5 0 c_{1} 0 c_{5}/C_{2} -5 STAR Au+Au Collisions $|y| < 0.5, 0.4 < p_{T} (GeV/c) < 2.0$ √s_{NN} (GeV) 27 54.4 200 Data Theory UrQMD LQCD 200 300 100 Average Number of Participant Nucleons $\langle \mathrm{N}_{_{\mathrm{part}}} \rangle$ Suggestive of smooth cross-over at top RHIC energies

PRL **126** (2021) 92301 PRC **104** (2021) 24902 arXiv:2105.14698

BES-II: Critical fluctuations

Current data: Suggestive of non-trivial √s dependence of net-proton cumulant ratios. Limited rapidity width range

BES-II: Quark coalescence via flow

How much collective motion from quark phase vs hadronic phase? Use φ as probe - very small hadronic scattering cross-section

BES-II: Precision measurement of the φ (and other) flow

Disappearance of partonic collectivity

3 GeV 2018 data - First order EP from EPD

NCQ scaling not observed at $\sqrt{s_{NN}} = 3 \text{ GeV}$

Particles and antiparticles no longer consistent with single-particle NCQ scaling as collision energy decreases mixing of transported and produced quarks changing

Particle production via coalescence

Assumptions:

- v₁ is developed in prehadronic stage
- Hadrons are formed via coalescence: $(v_n)_{hadron} = \Sigma(v_n)_{constituent quarks}$

•
$$(v_1)_{\bar{u}} = (v_1)_{\bar{d}}$$
 and $(v_1)_s = (v_1)_{\bar{s}}$

Dominance of baryonic scatterings

v₂ out-of-plane for

Models including baryon mean-fields needed to describe data Kaons not well described

Baryonic not partonic interactions dominate

Probing (grand)canonical production

First multi-dimensional ϕ and Ξ measurements at $\sqrt{s_{NN}} = 3 \text{ GeV}$

 p_T and rapidity spectra reported

Collision energy: below threshold for Ξ very close to threshold for ϕ

Local treatment of strangeness conservation crucial at lower $\sqrt{s_{NN}}$

Small strangeness correlation radius preferred, $r_c \le 4.2$ fm

CE cannot simultaneously describe $\phi/K-$ and $\phi/\Xi-$ ratios (also noted by HADES)

Polarization seen even at 3 GeV

No statistically significant dependence observed

- Measurements out to beam rapidity

Forward upgrade should yield interesting results

Access to initial B-field

Λ:

Hypernuclei - probe hyperon-nuclei interaction Lifetimes, Binding energies, branching ratios

Hypernuclei yields

Significant increase in production of hypernuclei expected

 10^{-2}

Canonical ensemble thermal model (GSI-Heidelberg) describes ${}^{3}_{\Lambda}H$

Charged particle intermittency

Intermittency analysis in p_T space - measure scaled factorial moments Probes local **density fluctuations** and long range correlations near CP

 F_q

 $F_q(M)$ - scaled factorial moment n_i - particle multiplicity in ith cell M^D - number of equal-size cells in which Ddimensional space is partitioned q - order of moment

$$(M) = \frac{\langle \frac{1}{M^{D}} \sum_{i=1}^{M^{D}} n_{i}(n_{i}-1) \dots (n_{i}-q+1) \rangle}{\langle \frac{1}{M^{D}} \sum_{i=1}^{M^{D}} n_{i} \rangle^{q}}$$
$$\Delta F_{q}(M) = F_{q}^{data}(M) - F_{q}^{mix}(M)$$
$$\Delta F_{q}(M) \propto \Delta F_{2}(M)^{\beta_{q}}$$
$$\beta_{a} \propto (q-1)^{\nu}$$

v specifies scaling behavior

Energy dependence of v could be used to search for signature of CP

Charged particle intermittency

Summary

Excellent performance from RHIC and STAR

All requested BES-II data collected and more - 17 unique energies from 3-200 GeV with some overlapping Collider and FXT energies

BES-II upgrades performing at or above expectations

Precision analyses ongoing with very well understood detector

- first results submitted

New ideas developed since original proposal: vorticity, hypernuclei...

Last chance to answer these critical HI questions at RHIC

Next steps

Run-22-25 - pp at 500 GeV, Au-Au, pp and p+Au at 200 GeV

Exciting physics program enabled by BES-II and Forward Upgrades collection of RHIC legacy data prior to EIC

BACK UP

Helen Caines - BES and Beyond - LBNL (remote) - August 2021 36

st Beam Energy Scan (BES-I)

Particle Rapidity

Designed to have roughly equal μ_B step sizes from $\sqrt{s_{NN}} = 200 - 7$ GeV

Collider mode of operation + STAR detector design - uniform acceptance around mid-rapidity

Projecting 7.7 GeV run time

Collision Energy (GeV)	7.7	9.2	11.5	14.6	17.1	19.6	27
Performance in BES-I	2010	NA	2010	2014	NA	2011	2011
Good Events (M)	4.3	NA	11.7	12.6	NA	36	70
Days running	19	NA	10	21	NA	9	8
Data Hours per day	11	NA	12	10	NA	9	10
Fill Length (min)	10	NA	20	60	NA	30	60
Good Event Rate (Hz)	7	NA	30	23	NA	100	190
Max DAQ Rate (Hz)	80	NA	140	1000	NA	500	1200
Performance in BES-II							
(achieved)	2021	2020	2020	2019	2021	2019	2018
Required Number of Events	100	160	230	300	250	400	NA
Achieved Number of Events	2.9	162	235	324	TBD	582	560
fill length (min)	20-45	45	25	45	50	60	120
Good Event Rate (Hz)	16-24	33	80	170	265	400	620
Max DAQ rate (Hz)	400	700	550	800	1300	1800	2200
Data Hours per day	12 - 15	13	13	9	15	10	9
Projected number of weeks	11-20	8.5-14	7.6-10	5.5	2.5	4.5	NA
weeks to reach goals	TBD	14.6^{\bigstar}	* 8.9	8.6 [×]	TBD	5.1^{\bigstar}	4.0

Below injection energy luminosity scales well with γ^3

Rescaled running times in agreement with lower-middle end of projections

7.7 GeV projections 11-20 (~28-CAD) weeks optimistic/pessimistic assumptions

*Running with significant LEReC **Run-20b running

Projecting 7.7 GeV run time

Collision Energy (GeV)	7.7	9.2	11.5	14.6	17.1	19.6	27		
Performance in BES-I	2010	NA	2010	Dun 2	0h 7 7		rupping ovor		
Good Events (M)	4.3	NA	11.7	holiday weekend reached a good event rate average of 1 Hz and up to 16 hours/day of					
Days running	19	NA	10						
Data Hours per day	11	NA	12						
Fill Length (min)	10	NA	20						
Good Event Rate (Hz)	7	NA	30						
Max DAQ Rate (Hz)	80	NA	140	odata taking!!			ing!!		
Performance in BES-II									
(achieved)	2021	2020	2020	2019	2021	2019	2018		
Required Number of Events	100	160	230	300	250	400	NA		
Achieved Number of Events	2.9	162	235	324	TBD	582	560		
fill length (min)	20-45	45	25	45	50	60	120		
Good Event Rate (Hz)	16-24	33	80	170	265	400	620		
Max DAQ rate (Hz)	400	700	550	800	1300	1800	2200		
Data Hours per day	12 - 15	13	13	9	15	10	9		
Projected number of weeks	11-20	8.5-14	7.6-10	5.5	2.5	4.5	NA		
weeks to reach goals	TBD	14.6^{\bigstar}	* 8.9	8.6	TBD	5.1^{\bigstar}	4.0		

Below injection energy luminosity scales well with γ^3

Rescaled running times in agreement with lower-middle end of projections

7.7 GeV projections 11-20 (~28-CAD) weeks optimistic/pessimistic assumptions

*Running with significant LEReC **Run-20b running

Event statistics requirements: Collider

Table 7: Event statistics (in millions) needed in the collider part of the BES-II program for various observables. This table updates estimates originally documented in STAR Note 598.

Collision Energy (GeV)	7.7	9.1	11.5	14.5	19.6
$\mu_{\rm B}$ (MeV) in 0-5% central collisions	420	370	315	260	205
Observables					
R_{CP} up to $p_{\rm T} = 5 \ {\rm GeV}/c$	_	-	160	125	92
Elliptic Flow (ϕ mesons)	80	120	160	160	320
Chiral Magnetic Effect	50	50	50	50	50
Directed Flow (protons)	20	30	35	45	50
Azimuthal Femtoscopy (protons)	35	40	50	65	80
Net-Proton Kurtosis	70	85	100	170	340
Dileptons	100	160	230	300	400
$>5\sigma$ Magnetic Field Significance	50	80	110	150	200
Required Number of Events	100	160	230	300	400

Typically factor 20 more than for BES-I

Event statistics requirements: FXT

Table 8: Event statistics (in millions) needed in the fixed-target part of the BES-II program forvarious observables.

$\sqrt{s_{NN}}$ (GeV)	3.0	3.2	3.5	3.9	4.5	5.2	6.2	7.7
Single Beam Energy (GeV)	3.85	4.55	5.75	7.3	9.8	13.5	19.5	31.2
$\mu_{\rm B}~({ m MeV})$	721	699	666	633	589	541	487	420
Rapidity y_{CM}	1.06	1.13	1.25	1.37	1.52	1.68	1.87	2.10
Observables								
Elliptic Flow (kaons)	300	150	80	40	20	40	60	80
Chiral Magnetic Effect	70	60	50	50	50	70	80	100
Directed Flow (protons)	20	30	35	45	50	60	70	90
Femtoscopy (tilt angle)	60	50	40	50	65	70	80	100
Net-Proton Kurtosis	36	50	75	125	200	400	950	NA
Multi-strange baryons	300	100	60	40	25	30	50	100
Hypertritons	200	100	80	50	50	60	70	100
Requested Number of Events	300	100	100	100	100	100	100	100

Beam E _T (GeV)	Beam E _k (AGeV)	Beam p _Z (GeV/c)	Rapidity y _{Beam}	√s _{NN} (GeV)	Rapidity У _{СМ}	Ch. Pot. μ _B (GeV)
3.85	2.92	3.73	2.10	3.0	1.05	721
4.59	3.66	4.50	2.28	3.2	1.13	699
5.75	4.82	5.67	2.51	3.5	1.25	666
7.3	6.4	7.25	2.75	3.9	1.37	633
9.8	8.9	9.44	3.04	4.5	1.52	589
13.5	12.6	13.5	3.37	5.2	1.68	541
19.5	18.6	19.5	3.73	6.2	1.87	487
26.5	25.6	26.5	4.04	7.2	2.02	443
31.2	30.3	31.2	4.20	7.7	2.10	420
44.5	43.6	44.5	4.56	9.2	2.28	372
70	69.1	70	5.01	11.5	2.51	316
100	99.1	100	5.37	13.7	2.69	276

Beam Halo on Al Vacuum Pipe

STAR

BES-II: Directed Flow Improvements

Current data: Double sign change of v1

Precision measurement of dv₁/dy as function of centrality

BES-II: Directed Flow Improvements

Current data: Double sign change of v1

Precision measurement of dv₁/dy as function of centrality

The spinning QGP

- Sheer forces in fluid lead to vorticity
- Spin-orbit coupling: polarization along direction of vorticity & J

$$\boldsymbol{\omega} = k_B T \left(\overline{\boldsymbol{\mathcal{P}}}_{\Lambda'} + \overline{\boldsymbol{\mathcal{P}}}_{\overline{\Lambda}'} \right) / \hbar,$$

 $\sqrt{s_{NN}}$ -averaged $\omega \approx (9 \pm 1) \times 10^{21} \text{ s}^{-1}$

Expected strong B-field coupled to magnetic moment of particles Affects particle and anti-particle differently

Nature 548 (2018) 62 PRC **98** (2018) 14910