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Why Fluctuations?

SPS RHIC
NICA

F. Karsch

To probe the structure of strongly interacting matter
Locate phase boundaries
Search for critical phenomena
…

fingerprints of criticality for mu,d = 0 
survive at crossover with mu,d ≠ 0

E-by-E fluctuations are predicted within 
Grand Canonical Ensemble

A. Bazavov et al., Phys.Rev. D85 (2012) 054503 

direct link to the EoS

probing the response of the system to
external perturbations

A. Rustamov, ALICE FSP Meeting, 1-3 September, 2019
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Why	fluctuations?:	Nature	of	chiral	phase	transition

small	u,	d	quark	masses	
↔	

vicinity	to	2nd order	O(4)	criticality

pseudocritical	features	possible

LHC

SPS	RHIC
NICA	FAIR

F.	Karsch,	Schleching 2016
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Criticality	at	Crossover
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contributions arising from the singular part of the QCD partition function Z(V, T ), or more precisely from the free
energy density, f = −TV −1 lnZ(V, T ). A recent analysis of scaling properties of the chiral condensate, performed
with the p4 action on coarse lattices, showed that critical behavior in the vicinity of the chiral phase transition is well
described by O(N) scaling relations [64] which give a good description even in the physical quark mass regime.
In the vicinity of the chiral phase transition, the free energy density may be expressed as a sum of a singular and

a regular part,

f = −
T

V
lnZ ≡ fsing(t, h) + freg(T,ml,ms) . (6)

Here t and h are dimensionless couplings that control deviations from criticality. They are related to the temperature
T and the light quark mass ml, which couples to the symmetry breaking (magnetic) field, as

t =
1

t0

T − T 0
c

T 0
c

, h =
1

h0
H , H =

ml

ms
, (7)

where T 0
c denotes the chiral phase transition temperature, i.e., the transition temperature at H = 0. The scaling

variables t, h are normalized by two parameters t0 and h0, which are unique to QCD and similar to the low energy
constants in the chiral Lagrangian. These need to be determined together with T 0

c . In the continuum limit, all three
parameters are uniquely defined, but depend on the value of the strange quark mass.
The singular contribution to the free energy density is a homogeneous function of the two variables t and h. Its

invariance under scale transformations can be used to express it in terms of a single scaling variable

z = t/h1/βδ =
1

t0

T − T 0
c

T 0
c

(

h0

H

)1/βδ

=
1

z0

T − T 0
c

T 0
c

(

1

H

)1/βδ

(8)

where β and δ are the critical exponents of the O(N) universality class and z0 = t0/h
1/βδ
0 . Thus, the dimensionless

free energy density f̃ ≡ f/T 4 can be written as

f̃(T,ml,ms) = h1+1/δfs(z) + fr(T,H,ms) , (9)

where the regular term fr gives rise to scaling violations. This regular term can be expanded in a Taylor series around
(t, h) = (0, 0). In all subsequent discussions, we analyze the data keeping ms in Eq. (9) fixed at the physical value
along the LCP. Therefore, the dependence on ms will, henceforth, be dropped.
We also note that the reduced temperature t may depend on other couplings in the QCD Lagrangian which do not

explicitly break chiral symmetry. In particular, it depends on light and strange quark chemical potentials µq, which
in leading order enter only quadratically,

t =
1

t0





T − T 0
c

T 0
c

+
∑

q=l,s

κq
(µq

T

)2
+ κls

µl

T

µs

T



 . (10)

Derivatives of the partition function with respect to µq are used to define the quark number susceptibilities.
The above scaling form of the free energy density is the starting point of a discussion of scaling properties of most

observables used to characterize the QCD phase transition. We will use this scaling Ansatz to test to what extent
various thermodynamic quantities remain sensitive to universal features of the chiral phase transition at nonzero
quark masses when chiral symmetry is explicitly broken and the singular behavior is replaced by a rapid crossover
characterized by pseudocritical temperatures (which we label Tc) rather than a critical temperature.
A good probe of the chiral behavior is the 2-flavor light quark chiral condensate

〈ψ̄ψ〉nf=2
l =

T

V

∂ lnZ

∂ml
. (11)

Following the notation of Ref. [64], we introduce the dimensionless order parameter Mb,

Mb ≡
ms〈ψ̄ψ〉

nf=2
l

T 4
. (12)

Multiplication by the strange quark mass removes the need for multiplicative renormalization constants; however, Mb

does require additive renormalization. For a scaling analysis in h at a fixed value of the cutoff, this constant plays no
role. Near T 0

c , Mb is given by a scaling function fG(z)

Mb(T,H) = h1/δfG(t/h
1/βδ) + fM,reg(T,H) , (13)

11

and a regular function fM,reg(T,H) that gives rise to scaling violations. We consider only the leading order Taylor
expansion of fM,reg(T,H) in H and quadratic in t,

fM,reg(T,H) = at(T )H

=

(

a0 + a1
T − T 0

c

T 0
c

+ a2

(

T − T 0
c

T 0
c

)2
)

H (14)

with parameters a0, a1 and a2 to be determined. The singular function fG is well studied in three dimensional spin
models and has been parametrized for the O(2) and O(4) symmetry groups [65–68]. Also, the exponents β, γ, δ and
ν used here are taken from Table 2 in Ref. [68].
Response functions, derived from the light quark chiral condensate, are sensitive to critical behavior in the chiral

limit. In particular, the derivative of 〈ψ̄ψ〉nf=2
l with respect to the quark masses gives the chiral susceptibility

χm,l =
∂

∂ml
〈ψ̄ψ〉nf=2

l . (15)

The scaling behavior of the light quark susceptibility, using Eq. (13), is

χm,l

T 2
=

T 2

m2
s

(

1

h0
h1/δ−1fχ(z) +

∂fM,reg(T,H)

∂H

)

,

with fχ(z) =
1

δ
[fG(z)−

z

β
f ′
G(z)]. (16)

The function fχ has a maximum at some value of the scaling variable z = zp. For small values of h this defines the
location of the pseudocritical temperature Tc as the maximum in the scaling function fG(z). Approaching the critical
point along h with z fixed, e.g., z = 0 or z = zp, χm,l diverges in the chiral limit as

χm,l ∼ m1/δ−1
l . (17)

Similarly, the mixed susceptibility

χt,l = −
T

V

∂2

∂ml∂t
lnZ , (18)

also has a peak at some pseudocritical temperature and diverges in the chiral limit as

χt,l ∼ m(β−1)/βδ
l . (19)

One can calculate χt,l either by taking the derivative of 〈ψ̄ψ〉 with respect to T or by taking the second derivative
with respect to µl, i.e., by calculating the coefficient of the second order Taylor expansion for the chiral condensate
as a function of µl/T [69]. The derivative of 〈ψ̄ψ〉 with respect to T is the expectation value of the chiral condensate
times the energy density, which is difficult to calculate in lattice simulations, as additional information on temperature
derivatives of temporal and spatial cutoff parameters is needed. Taylor expansion coefficients, on the other hand, are
well defined and have been calculated previously, although their calculation is computationally intensive. This mixed
susceptibility has been used to determine the curvature of the chiral transition line for small values of the baryon
chemical potential [69].
Other thermodynamic observables analyzed in this paper are the light and strange quark number susceptibilities

defined as

χq

T 2
=

1

V T 3

∂2 lnZ

∂(µq/T )2
, q = l, s . (20)

These are also sensitive to the singular part of the free energy since the reduced temperature t depends on the quark
chemical potentials as indicated in Eq. (10). However, unlike the temperature derivative of the chiral condensate, i.e.,
the mixed susceptibility χt,l, the temperature derivative of the light quark number susceptibility does not diverge in
the chiral limit. Its slope at T 0

c is given by

∂χq

∂T
∼ cr +A±

∣

∣

∣

∣

T − T 0
c

T 0
c

∣

∣

∣

∣

−α

, (21)
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derivatives of temporal and spatial cutoff parameters is needed. Taylor expansion coefficients, on the other hand, are
well defined and have been calculated previously, although their calculation is computationally intensive. This mixed
susceptibility has been used to determine the curvature of the chiral transition line for small values of the baryon
chemical potential [69].
Other thermodynamic observables analyzed in this paper are the light and strange quark number susceptibilities

defined as

χq

T 2
=

1

V T 3

∂2 lnZ

∂(µq/T )2
, q = l, s . (20)

These are also sensitive to the singular part of the free energy since the reduced temperature t depends on the quark
chemical potentials as indicated in Eq. (10). However, unlike the temperature derivative of the chiral condensate, i.e.,
the mixed susceptibility χt,l, the temperature derivative of the light quark number susceptibility does not diverge in
the chiral limit. Its slope at T 0

c is given by

∂χq

∂T
∼ cr +A±

∣

∣

∣

∣

T − T 0
c

T 0
c

∣

∣

∣

∣

−α

, (21)

Phase boundaries from first moments 
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large deviations from non-interacting HRG model

6th order cumulants of baryon number fluctuations 
and their correlations with electric charge are 
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Difference	between	two	independent	Poissonian distributions

2 P. Braun-Munzinger, A. Rustamov, J. Stachel / Nuclear Physics A 00 (2018) 1–5

(HRG) model predictions [3] to the hadron multiplicities measured by ALICE. This agreement implies that
strongly interacting matter, created in collisions of Pb nuclei at LHC energies, freezes out in close vicinity
of the chiral phase transition line. Hence, singularities stemming from a second order phase transition can
be captured also at vanishing net-baryon densities. The current measurements, by the STAR collaboration at
RHIC, and by ALICE at the LHC, have provided interesting and stimulating results. However, quantitative
analysis of these measurements is made di�cult by the presence of non-critical e↵ects such as volume or
participant fluctuations and by correlations introduced by overall baryon number conservation.

Conserved quantities fluctuate only in sub-regions of the available total phase space of the reaction. In
statistical mechanics they are hence predicted within the Grand Canonical Ensemble (GCE) [4] formulation,
where only the average values of net-baryons are conserved [4]. To compare theoretical calculations within
GCE, such as HRG [3] and LQCD [1], to experimental results, the requirements of GCE have to be achieved
in experiments. In experiments over the full acceptance, baryon number is conserved in each event, hence
even in a limited acceptance its implications will be seen. Here, using the CE, we provide quantitative
estimates of the implication of baryon conservation in a finite acceptance.

2. Fluctuations in GCE and CE

In a thermal system with an ideal gas EoS, composed of baryon/anti-baryon species with baryon numbers
+1 and -1, GCE partition function yields the uncorrelated Poisson distributions for baryons and anti-baryons,
hence the net-baryon distribution has the following cumulants [5]1:

n(S kellam) = hnBi + (�1)n hnB̄i , (1)

where hnBi and hnB̄i denote the first cumulants (mean numbers) of baryons and anti-baryons, respectively.
Eq. (1) implies that ratios of even-to-even and odd-to-odd cumulants of net-baryons are always unity, while
the ratios of odd-to-even cumulants depend on mean multiplicities.

2n+1

2k

=
hnBi � hnB̄i
hnBi + hnB̄i

. (2)

Hitherto, the above conditions are used as baseline for net-baryon fluctuations. However, this can lead
to misleading conclusions because, apart from dynamical fluctuations induced by critical phenomena, de-
viations from this baseline may be driven by non-dynamical contributions. Recently we demonstrated that
fluctuations of participating nucleons from event-to-event significantly distort measured event-by-event fluc-
tuation signals [5]. At low energies2, participant fluctuations always increase the measured dynamical fluc-
tuations up to the third cumulant of net-proton distributions. In contrast, starting from the fourth cumulant,
they can in fact decrease the signal. Below, we consider the CE partition function to investigate e↵ects of
exact baryon number conservation. It is

ZCE(V,T, B) =
1X

NB=0

1X

NB̄=0

(�BzB)NB

NB!
(�B̄zB̄)NB̄

NB̄!
�(NB � NB̄ � B) =

 
zB

zB̄

! B

2

IB(2
p

zBzB̄)
�����
�B,B̄=1

, (3)

where IB denotes the modified Bessel function, �B,B̄ are fugacities and zB,B̄ stand for single particle partition
functions of baryons and anti-baryons respectively. The � function in Eq. (3) guarantees that, in each event,
the net number of baryons is fixed, i.e, net-baryons do not fluctuate from event-to-event. In order to get
finite fluctuations for net-baryons, distributions of baryons and anti-baryons have to be folded with the

1The probability distribution of the di↵erence of two random variables each generated from uncorrelated Poisson distributions is
called Skellam distribution.

2We note that at LHC energies, where mean numbers of net-baryons measured at mid-rapidity are zero, contributions from partici-
pant fluctuations to second and third cumulants of net-baryon distributions are vanishing.
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Importance	of	acceptance and	baryon	number	conservation

Ø Fluctuations	of	conserved	charges	appear	
only	inside	finite	acceptance

Ø In	the	limit	of	very	small	acceptance	
→ only	Poissonian fluctuations	
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Figure 1. Left panel: the normalized values of 2(B�B̄), for di↵erent values of�ycorr, as a function

of accepted fraction of baryons. The red solid symbols, represented by �ycorr = 1, actually

correspond to �ycorr = 100, and are consistent with the global baryon number conservation.

(cf. Eq.(4) of [10]). Right panel: comparison of the results with the ALICE data. Within the

experimental uncertainties, the data are best described by global baryon number conservation

(�ycorr = 1) but are consistent with �ycorr � 5. Values of �ycorr smaller than 5 lead to results in

disagreement with the experimental measurements. Interestingly, the blue solid line, representing

the results of the HIJING generator, underestimates the experimental data and is described by the

local baryon number conservation with �ycorr = 2.

where IB denotes the modified Bessel function, �B,B̄ are fugacities and zB,B̄ stand for sin-

gle particle partition functions of baryons and anti-baryons respectively. The � function in

Eq. (3) guarantees that, in each event, the net number of baryons is fixed, i.e, net-baryons

do not fluctuate from event-to-event. In order to get finite fluctuations for net-baryons, dis-

tributions of baryons and anti-baryons have to be folded with the experimental acceptance.

III. LOCAL CONSERVATION LAWS

In [10–13] e↵ects of global conservation laws on fluctuations of conserved charges were

addressed. In our previous work the energy dependence of cumulants of net-protons, reported

by STAR for Au+Au collisions, is consistently described above
p
sNN = 11.5 GeV under

the assumption of global baryon number conservation and fluctuations in the number of

participating nucleons [10]. Here, using the same algorithm, we investigate contributions

4

Ø Baryon	number	conservation	imposes	subtle	correlations	

from local baryon number conservation [14]. We first sample the number of baryons NB and

anti-baryons NB̄ from the probability distributions encoded in the CE partition function

(cf. Eq. 3). To this end, we simulated 107 events with hNBi = hNB̄i = 50 for baryons and

anti-baryons respectively.2 Next, using the shape of the charged particle pseudo-rapidity

distribution as measured by ALICE [15] and assuming that, at LHC energy, baryons follow

the same shape as charged particles, we introduce finite acceptance e↵ect. In doing so we

first generate a baryon of rapidity yB, and a corresponding anti-baryon if its rapidity yB̄

satisfies the condition:

|yB̄ � yB| <
�ycorr

2
. (4)

We note that, in this representation, global baryon number conservation corresponds to

�ycorr = 1. The results for the normalized values of 2(B � B̄) are presented in the left

panel of Fig. 1 as a function of the accepted fraction of baryons ↵ for di↵erent values of

�ycorr. Here, ↵ is defined as the ratio of baryons inside the acceptance to the number of

baryons in full phase space. As expected, the magnitude of normalized net-baryon num-

ber fluctuations decreases with decreasing �ycorr. The red solid symbols, corresponding to

�ycorr = 1, are actually computed for �ycorr = 100, and are consistent with Eq.(4) of [10],

derived for global baryon number conservation. In the right panel of Fig. 1 we compare

our results for di↵erent �ycorr to the experimental measurements of the second cumulant

of net-protons, as reported by the ALICE collaboration [7]. For this purpose, we use the

acceptance fraction ↵, corresponding to each �⌘ in the right panel of Fig. 1 (cf. [7]) and

determined the value of 2(p � p̄)/ < np + np̄ > from the left panel of Fig. 1. Within the

experimental uncertainties, the data are best described by global baryon number conserva-

tion but are consistent with �ycorr � 5. Values of �ycorr smaller than 5 lead to results in

disagreement with the experimental measurements. Apparently, e↵ects due to local baryon

number conservation are small in second cumulants of net-protons.

Interestingly, predictions using the HIJING [16, 17] generator, presented in the right panel

of Fig. 1, clearly underestimate the experimental data. On the other hand, our calculation

with �ycorr = 2 is consistent with the HIJING results. This implies that the correlations

between protons and anti-protons in the rapidity space obtained from HIJING are too strong

ranged, not consistent with the experimental results.

2 We verified that the presented results are not sensitive to the specific values of hNBi and hNB̄i.

5

also be strongly reduced [22] and consequently, net baryons will be distributed according

to the di↵erence of two independent Poisson distributions, the Skellam distribution. This

statement is analytically proven below. On the other hand, by enlarging the acceptance, in

order to catch dynamical fluctuations, correlations due to baryon number conservation will

be significant. The aim of this section is to estimate the contribution from the conservation

laws and subtract it from the measured fluctuation signals.

In order to get a quantitative estimate for what means ”large” acceptance we will model

the finite acceptance with the binomial distribution.

We first define the acceptance factor for baryons as the ratio of mean number of detected

baryons hNacc
B i to the number of baryons in the full phase space hN4⇡

B i:

↵ =
hNacc

B i
hN4⇡

B i . (29)

Furthermore, we assume the same acceptance factor for anti-baryons. Given the number

of baryons NB in the full phase space, the probability of measuring nB baryons in the

acceptance is

B (nB;NB,↵) =
NB!

nB! (NB � nB)!
↵nB (1� ↵)NB�nB , (30)

If the number of baryons in 4⇡ are distributed according to some probability distribution

P (NB) the corresponding multiplicity distribution in the acceptance will then be

P (nB) =
X

NB

B(nB;NB,↵)P (NB). (31)

The moments of the measured baryon distributions can be then calculated

hnBi =
1X

nB=0

nBP (nB) = ↵ hNBi , (32)

⌦
n2
B

↵
=

1X

nB=0

n2
BP (nB) = ↵2

⌦
N2

B

↵
+ ↵(1� ↵) hNBi . (33)

In a similar way corresponding moments for the anti-baryons can be derived:

hnB̄i =
1X

nB̄=0

nB̄P (nB̄) = ↵ hNB̄i , (34)
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Ø Baryon	number	conservation	imposes	subtle	correlations	

from local baryon number conservation [14]. We first sample the number of baryons NB and

anti-baryons NB̄ from the probability distributions encoded in the CE partition function

(cf. Eq. 3). To this end, we simulated 107 events with hNBi = hNB̄i = 50 for baryons and

anti-baryons respectively.2 Next, using the shape of the charged particle pseudo-rapidity

distribution as measured by ALICE [15] and assuming that, at LHC energy, baryons follow

the same shape as charged particles, we introduce finite acceptance e↵ect. In doing so we

first generate a baryon of rapidity yB, and a corresponding anti-baryon if its rapidity yB̄

satisfies the condition:

|yB̄ � yB| <
�ycorr

2
. (4)

We note that, in this representation, global baryon number conservation corresponds to

�ycorr = 1. The results for the normalized values of 2(B � B̄) are presented in the left

panel of Fig. 1 as a function of the accepted fraction of baryons ↵ for di↵erent values of

�ycorr. Here, ↵ is defined as the ratio of baryons inside the acceptance to the number of

baryons in full phase space. As expected, the magnitude of normalized net-baryon num-

ber fluctuations decreases with decreasing �ycorr. The red solid symbols, corresponding to

�ycorr = 1, are actually computed for �ycorr = 100, and are consistent with Eq.(4) of [10],

derived for global baryon number conservation. In the right panel of Fig. 1 we compare

our results for di↵erent �ycorr to the experimental measurements of the second cumulant

of net-protons, as reported by the ALICE collaboration [7]. For this purpose, we use the

acceptance fraction ↵, corresponding to each �⌘ in the right panel of Fig. 1 (cf. [7]) and

determined the value of 2(p � p̄)/ < np + np̄ > from the left panel of Fig. 1. Within the

experimental uncertainties, the data are best described by global baryon number conserva-

tion but are consistent with �ycorr � 5. Values of �ycorr smaller than 5 lead to results in

disagreement with the experimental measurements. Apparently, e↵ects due to local baryon

number conservation are small in second cumulants of net-protons.

Interestingly, predictions using the HIJING [16, 17] generator, presented in the right panel

of Fig. 1, clearly underestimate the experimental data. On the other hand, our calculation

with �ycorr = 2 is consistent with the HIJING results. This implies that the correlations

between protons and anti-protons in the rapidity space obtained from HIJING are too strong

ranged, not consistent with the experimental results.

2 We verified that the presented results are not sensitive to the specific values of hNBi and hNB̄i.

5

also be strongly reduced [22] and consequently, net baryons will be distributed according

to the di↵erence of two independent Poisson distributions, the Skellam distribution. This

statement is analytically proven below. On the other hand, by enlarging the acceptance, in

order to catch dynamical fluctuations, correlations due to baryon number conservation will

be significant. The aim of this section is to estimate the contribution from the conservation

laws and subtract it from the measured fluctuation signals.

In order to get a quantitative estimate for what means ”large” acceptance we will model

the finite acceptance with the binomial distribution.

We first define the acceptance factor for baryons as the ratio of mean number of detected

baryons hNacc
B i to the number of baryons in the full phase space hN4⇡

B i:

↵ =
hNacc

B i
hN4⇡

B i . (29)

Furthermore, we assume the same acceptance factor for anti-baryons. Given the number

of baryons NB in the full phase space, the probability of measuring nB baryons in the

acceptance is

B (nB;NB,↵) =
NB!

nB! (NB � nB)!
↵nB (1� ↵)NB�nB , (30)

If the number of baryons in 4⇡ are distributed according to some probability distribution

P (NB) the corresponding multiplicity distribution in the acceptance will then be

P (nB) =
X

NB

B(nB;NB,↵)P (NB). (31)

The moments of the measured baryon distributions can be then calculated

hnBi =
1X

nB=0

nBP (nB) = ↵ hNBi , (32)

⌦
n2
B

↵
=

1X

nB=0

n2
BP (nB) = ↵2
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N2

B

↵
+ ↵(1� ↵) hNBi . (33)

In a similar way corresponding moments for the anti-baryons can be derived:

hnB̄i =
1X

nB̄=0

nB̄P (nB̄) = ↵ hNB̄i , (34)

20

5

A. R., QM2017, arXiv:1704.05329   

14

η∆
0.5 1 1.5

(S
ke

lla
m

)
2

κ

)p
(p

 -
 

2
κ

0.9

0.95

1

1.05

1.1

1.15
 = 2.76 TeVNNsALICE Preliminary, Pb-Pb 

, centrality 0-5%c < 1.5 GeV/p0.6 < 

ratio, stat. uncert.
syst. uncert.
baryon conserv. arXiv:1612.00702
syst. uncert. HIJING, AMPT

ALI-PREL-122602

Net-protons, acceptance dependence

conservation laws
or genuine physics

Δ"Δ"#$%

&' () − ()
&' +,-../0

aacceptance factor 
0 0.5 1

(S
ke

lla
m

)
2k

)
B

-n
B

(n 2k

0

0.5

1
CE sim.

CE calc.

GCE 1 − 2

2 = ⁄() ()56

P. Braun-Munzinger, A. R.,  J. Stachel, NPA 982 (2019) 307-310
A. Bzdak, V. Koch, V. Skokov, PRC87 (2013) 014901
K. Redlich and L. Turko, Z. Phys. C5 (1980) 201

contribution from conservation laws

A. R., QM2017, NPA 967 (2017) 453-456

A. Rustamov, 28.03.2019

1

𝜅= 𝐵 − 𝐵;
𝑛: + 𝑛:;

Importance	of	acceptance and	baryon	number	conservation

Ø Fluctuations	of	conserved	charges	appear	
only	inside	finite	acceptance

Ø In	the	limit	of	very	small	acceptance	
→ only	Poissonian fluctuations	

Mesut	Arslandok,	Yale	UniversityRHIC	BES	and	Beyond,	16.08.2021

ALI-SIMUL-319054



Results

6Mesut	Arslandok,	Yale	UniversityRHIC	BES	and	Beyond,	16.08.2021



Main	detectors	used:

Ø Inner	Tracking	System	(ITS)	
→	Tracking	and	vertexing

Ø Time	Projection	Chamber	(TPC)
→	Tracking	and	

Particle	Identification	(PID)
Ø Time	Of	Flight	(TOF)

→	Tracking	and	PID
Ø Vertex	0 (V0)

→	Centrality	determination

Data	Set:

Ø 𝑠CC� = 5.02	TeV,	~150	M	events
Ø 𝑠CC� = 2.76	TeV,	~12	M	events

7

A Large	Ion	Collider	Experiment
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Methods

Ø Cut-based	approach:	
• Count	tracks of	a	given	particle	type

Ø Identity	method:								
• Count	probabilities to	be	of	a	given	particle	type
• Gives	folded	multiplicity	distribution	
• Allows	for	larger	efficiencies	

→ smaller	correction	needed
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Ø Net-electric-charge:	→ Strongly	dominated	by	resonance	contributions

9
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Ø Net-electric-charge:	→ Strongly	dominated	by	resonance	contributions
Ø Net-strangeness:	→ Kaons	are	dominated	by	𝛟-decay
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Ø Net-electric-charge:	→ Strongly	dominated	by	resonance	contributions
Ø Net-strangeness:	→ Kaons	are	dominated	by	𝛟-decay
Ø Net-baryon:
							→ Due	to	isospin	randomization,	at	 𝑠CC� >	10	GeV net-baryon fluctuations	can	be	obtained	from	corresponding	

net-protonmeasurements (M.	Kitazawa,	and	M.	Asakawa, Phys.	Rev.	C	86,	024904	(2012))
→ No	resonance	feeding	p + p;
→ Best	candidate	for	measuring	charge	susceptibilities

9
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Ø Deviation	from	Skellam	baseline	is	due	to baryon	number	conservation
Ø ALICE	data	suggest	long	range	correlations,	∆𝑦 = ±2.5	unit or	longer
Ø EPOS	agrees	with	ALICE	data	but	HIJING	deviates	significantly

• Event	generators	based	on	string	fragmentation	(HIJING)	conserve	baryon	number	over	∆𝑦 = ±1 unit

10

2nd order	cumulants	of	net-p
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Ø Data	agree	with	Skellam	baseline	“0”	as	a	function	of	centrality	and	pseudorapidity
Ø Achieved	precision	of	better	than	5%

11
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Ø Data	agree	with	Skellam	baseline	“0”	as	a	function	of	centrality	and	pseudorapidity
Ø Achieved	precision	of	better	than	5%
Ø EPOS	and	HIJING	in	agreement	with	data

• Both	models	conserve	global	charge	à net-p	within	acceptance	is	~0

11

3rd order	cumulants	of	net-p
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Ø Similar	trend	as	for	net-p
Ø Better	precision	is	needed	to	see	the	impact	of	strangeness	conservation	
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4

of the Monte Carlo events, Nevent. The validity of the fits212

would be checked by setting Nevent to the same value as213

the statistics of the experimental data. When the value214

of chi-square, �2
/ndf, of these fits are close to unity with215

this statistics, there are no reasons to reject the use of216

Eq. (17). Next, the fitting results of rmj can also de-217

pend on the form of PMC(N). This suggests that one218

must check the sensitivity of the fit results on the form219

of PMC(N), or perform an iterative procedure as follows:220

1. Generate R(n;N) by a Monte-Carlo simulation221

with a presumed distribution PMC(N).222

2. Perform fits to Rm(N) with Eq. (16). One then223

obtains rmj for m, j  L. Together with the exper-224

imental results on hhnmii, one obtains the corrected225

moments hNmi.226

3. If hNmi thus obtained have large deviations from227

the moments of PMC(N), replace PMC(N) with the228

one consistent with hNmi obtained in the above229

step, and take the analysis from the top again.230

4. Repeat this iteration until PMC(N) is consistent231

with hNmi obtained by the correction.232

It, however, is expected that the result of the fits are in-233

sensitive to PMC(N), especially on the cumulants higher234

than the second order. The use of the Gaussian distri-235

bution with the mean and variance obtained by the cor-236

rection for PMC(N) would be su�cient for this analysis.237

It is also expected that a few iterations are enough for238

convergence.239

Finally, we comment on the error analysis. First, in240

the detector-response correction with Eq. (17), it is im-241

portant to reflect the correlation between the errors of242

rmj to the final result appropriately. An automatic way243

to include the correlation is the use of the bootstrap or244

jackknife analysis with the successive generation of Monte245

Carlo events. Second, in the present method it is possible246

to reduce the errors of rmj by increasing Nevent indepen-247

dently of the statistics of hhnmii. In fact, in the next248

section we will see that the suppression of the error of249

rmj is e↵ective in reducing the error of the final result.250

With increasing Nevent, however, the �2
/ndf of the fits to251

Rm(N) with Eq. (16) will eventually become unaccept-252

ably large. In this case, the analysis with the truncation253

loses its validity. In this sense, this analysis has an upper254

limit of the resolution. Third, the e↵ect of the truncation255

can be estimated by comparing the corrected results at256

the L and (L+ 1)th orders. Such analyses would require257

large statistics, but are desirable for a proper estimate on258

the systematic uncertainty of the analysis.259

IV. TEST ANALYSIS 1: EXACT MODELS260

In this and next sections, we perform test analyses for261

the detector-response correction discussed in Sec. II with262

toy models for R(n;N), and show that the corrections263

are carried out successfully in these cases.264

In this section, we first perform test analyses for the
response matrices which can be solved exactly discussed
in Sec. IID. We consider two non-binomial models for

FIG. 1. Correlation between n and N on the sample events,
i.e. the magnitude of R(n;N)P (N), for the response matrices
RHG(n;N) (hypergeometric) and R�(n;N) (beta-binomial)
with p = X/Y = 0.7 and Y = 140.

R(n;N) parametrized by the hypergeometric and beta-
binomial distributions as

RHG(n;N) = H(n;N,X, Y ), (18)

R�(n;N) = �(n;N,X, Y �X), (19)

where the hypergeometric and beta-binomial distribu-265

tions, H(n;N,X, Y ) and �(n;N, a, b), are defined in Ap-266

pendix D. The response matrices parametrized by these267

distributions are studied in Ref. [27] as examples that268

the binomial model fails in obtaining the true cumulants,269

and are good starting points for the check of the new270

method. Equations (18) and (19) approach the binomial271

model Rbin(n;N) = B(n; p,N) in the Y ! 1 limit with272

fixed p = X/Y , while the distribution of n in RHG(n;N)273

(R�(n;N)) is narrower (wider) than the binomial dis-274

tribution with finite Y . As discussed in Appendix D,275

the values of rmj in Eq. (6) are obtained analytically for276

RHG(n;N) and R�(n;N).277

The procedure of the test analysis is as follows. We278

first generate sample events ofN by assuming the Poisson279

distribution for P (N) with hNi = 40. We then specify280

the value of n for each sample event randomly accord-281

ing to the probability RHG(n;N) or R�(n;N). This al-282

lows one to obtain the moments hhnmii. These moments283

are used for the correction in Eq. (9). To proceed the284

correction, we take the following two di↵erent analyses.285

First, because the values of rmj are analytically known286

for RHG(n;N) and R�(n;N), we perform the correction287

with these values. Besides this analysis, as a second op-288

tion, we analyze hNmi with the values of rmj determined289

by the fits to Rm(N) obtained on the sample events with290

statistical errors. The second analysis supposes the cor-291

rection of realistic detectors, of which the response matrix292

is obtained only stochastically.293

In Fig. 1, we show the correlation between n and N on294

the 108 sample events by plotting the two-dimensional295

histogram as a function of n and N for the hypergeo-296

metric (RHG(n;N)) and beta-binomial (R�(n;N)) dis-297

tributions with p = 0.7 and Y = 140. (This plot thus298

represents the magnitude of R(n;N)P (N), and is usu-299

ally called the “response matrix” in literature for sim-300

plicity.) One finds from the figure that the distributions301

are clearly di↵erent between the two response matrices;302

the width of n with fixed N is narrower for RHG(n;N)303

than R�(n;N).304

In Fig. 2, we show the cumulants of the response matrix

Draw	N	balls	from	the	urn	
without	returning	balls	to	

the	urn

In	each	draw,	when	one	draws	
a	white	ball,	two	white	balls	are	

returned	to	the	urn	
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T.	Nonaka,	M.	Kitazawa,	S.	Esumi,	Phys.	Rev.	C	95,	064912	(2017)
Adam	Bzdak,	Volker	Koch,	Phys.	Rev.	C86,	044904	(2012)
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of the Monte Carlo events, Nevent. The validity of the fits212

would be checked by setting Nevent to the same value as213

the statistics of the experimental data. When the value214

of chi-square, �2
/ndf, of these fits are close to unity with215

this statistics, there are no reasons to reject the use of216

Eq. (17). Next, the fitting results of rmj can also de-217

pend on the form of PMC(N). This suggests that one218

must check the sensitivity of the fit results on the form219

of PMC(N), or perform an iterative procedure as follows:220

1. Generate R(n;N) by a Monte-Carlo simulation221

with a presumed distribution PMC(N).222

2. Perform fits to Rm(N) with Eq. (16). One then223

obtains rmj for m, j  L. Together with the exper-224

imental results on hhnmii, one obtains the corrected225

moments hNmi.226

3. If hNmi thus obtained have large deviations from227

the moments of PMC(N), replace PMC(N) with the228

one consistent with hNmi obtained in the above229

step, and take the analysis from the top again.230

4. Repeat this iteration until PMC(N) is consistent231

with hNmi obtained by the correction.232

It, however, is expected that the result of the fits are in-233

sensitive to PMC(N), especially on the cumulants higher234

than the second order. The use of the Gaussian distri-235

bution with the mean and variance obtained by the cor-236

rection for PMC(N) would be su�cient for this analysis.237

It is also expected that a few iterations are enough for238

convergence.239

Finally, we comment on the error analysis. First, in240

the detector-response correction with Eq. (17), it is im-241

portant to reflect the correlation between the errors of242

rmj to the final result appropriately. An automatic way243

to include the correlation is the use of the bootstrap or244

jackknife analysis with the successive generation of Monte245

Carlo events. Second, in the present method it is possible246

to reduce the errors of rmj by increasing Nevent indepen-247

dently of the statistics of hhnmii. In fact, in the next248

section we will see that the suppression of the error of249

rmj is e↵ective in reducing the error of the final result.250

With increasing Nevent, however, the �2
/ndf of the fits to251

Rm(N) with Eq. (16) will eventually become unaccept-252

ably large. In this case, the analysis with the truncation253

loses its validity. In this sense, this analysis has an upper254

limit of the resolution. Third, the e↵ect of the truncation255

can be estimated by comparing the corrected results at256

the L and (L+ 1)th orders. Such analyses would require257

large statistics, but are desirable for a proper estimate on258

the systematic uncertainty of the analysis.259

IV. TEST ANALYSIS 1: EXACT MODELS260

In this and next sections, we perform test analyses for261

the detector-response correction discussed in Sec. II with262

toy models for R(n;N), and show that the corrections263

are carried out successfully in these cases.264

In this section, we first perform test analyses for the
response matrices which can be solved exactly discussed
in Sec. IID. We consider two non-binomial models for

FIG. 1. Correlation between n and N on the sample events,
i.e. the magnitude of R(n;N)P (N), for the response matrices
RHG(n;N) (hypergeometric) and R�(n;N) (beta-binomial)
with p = X/Y = 0.7 and Y = 140.

R(n;N) parametrized by the hypergeometric and beta-
binomial distributions as

RHG(n;N) = H(n;N,X, Y ), (18)

R�(n;N) = �(n;N,X, Y �X), (19)

where the hypergeometric and beta-binomial distribu-265

tions, H(n;N,X, Y ) and �(n;N, a, b), are defined in Ap-266

pendix D. The response matrices parametrized by these267

distributions are studied in Ref. [27] as examples that268

the binomial model fails in obtaining the true cumulants,269

and are good starting points for the check of the new270

method. Equations (18) and (19) approach the binomial271

model Rbin(n;N) = B(n; p,N) in the Y ! 1 limit with272

fixed p = X/Y , while the distribution of n in RHG(n;N)273

(R�(n;N)) is narrower (wider) than the binomial dis-274

tribution with finite Y . As discussed in Appendix D,275

the values of rmj in Eq. (6) are obtained analytically for276

RHG(n;N) and R�(n;N).277

The procedure of the test analysis is as follows. We278

first generate sample events ofN by assuming the Poisson279

distribution for P (N) with hNi = 40. We then specify280

the value of n for each sample event randomly accord-281

ing to the probability RHG(n;N) or R�(n;N). This al-282

lows one to obtain the moments hhnmii. These moments283

are used for the correction in Eq. (9). To proceed the284

correction, we take the following two di↵erent analyses.285

First, because the values of rmj are analytically known286

for RHG(n;N) and R�(n;N), we perform the correction287

with these values. Besides this analysis, as a second op-288

tion, we analyze hNmi with the values of rmj determined289

by the fits to Rm(N) obtained on the sample events with290

statistical errors. The second analysis supposes the cor-291

rection of realistic detectors, of which the response matrix292

is obtained only stochastically.293

In Fig. 1, we show the correlation between n and N on294

the 108 sample events by plotting the two-dimensional295

histogram as a function of n and N for the hypergeo-296

metric (RHG(n;N)) and beta-binomial (R�(n;N)) dis-297

tributions with p = 0.7 and Y = 140. (This plot thus298

represents the magnitude of R(n;N)P (N), and is usu-299

ally called the “response matrix” in literature for sim-300

plicity.) One finds from the figure that the distributions301

are clearly di↵erent between the two response matrices;302

the width of n with fixed N is narrower for RHG(n;N)303

than R�(n;N).304

In Fig. 2, we show the cumulants of the response matrix

Draw	N	balls	from	the	urn	
without	returning	balls	to	

the	urn

In	each	draw,	when	one	draws	
a	white	ball,	two	white	balls	are	

returned	to	the	urn	
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FIG. 2. Cumulants of the response matrix Cm(N) for
RHG(n;N) and R�(n;N) obtained on 108 sample events with
p = 0.7 and Y = 140. The dashed lines show the analytic val-
ues, while the dotted lines represent the fitting results with
mth-order polynomial.

Cm(N) defined by

C1(N) = R1(N), C2(N) = R2(N)� (R1(N))2, (20)

and so forth, for RHG(n;N) and R�(n;N) obtained on305

108 sample events with p = 0.7 and Y = 140 for m 306

4. The dashed lines show the analytic values, while the307

dotted lines are the fitting results with the mth-order308

polynomial. From these fits one obtains the values of309

rmj .310

In Fig. 3, we show the corrected values of the cumu-311

lants hNmic for m  4 with p = 0.7 and various values of312

Y . The left (right) panel shows the results for RHG(n;N)313

(R�(n;N)). The triangles represent the results obtained314

with the analytic values of rmj , while the results obtained315

with rmj determined by the fits to Rm(N) are shown by316

squares. 107 sample events are used to obtain hhnmii in317

both analyses, while rmj in the latter analysis are ob-318

tained with 108 sample events. Errors are estimated by319

repeating the same simulation 100 times. One finds from320

the figure that the corrected cumulants hNmic are con-321

sistent with the true value, hNmic = 40 shown by the322

dashed line, within statistics for all values of Y in both323

analyses. In Fig. 3, the uncorrected cumulants, hhnmii
c
,324

are shown by filled circles. We also show the results of325

the e�ciency correction with the binomial model with326

p = 0.7 by the stars. The results in the binomial model327

fail in reproducing the true cumulants [27], in contrast to328

the new method.329

From Fig. 3 one also finds that the statistical error330

is large when rmj are determined by the fits, although331

the statistics to determine rmj is one order larger than332

that for hhnmii. This suggests that the suppression of the333

uncertainty of rmj is crucial in reducing the error of the334

final results.335

FIG. 3. Cumulants obtained by the detector-response correc-
tion, hNmi, up to the fourth order with p = 0.7 as functions
of Y for RHG(n;N) (left) and R�(n;N) (right). The results
obtained with the analytic (fitted) values of rmj are shown
by triangles (squares). The corrected values agree with the
true cumulants hNmic = 40 shown by the dashed line within
statistics. The uncorrected cumulants hhnmii

c
and the cor-

rected results in the binomial model are also shown by circles
and stars, respectively.

Finally, we note that the fitting results of Cm(N) in336

Fig. 2 have significant deviations from the analytic val-337

ues for N & 60. Nevertheless, the final results obtained338

with these fits reproduce the true values within statistics.339

This result shows that the detector-response correction is340

carried out appropriately even if the fits do not reproduce341

Rm(N) in the range of N at which P (N) is small.342

V. TEST ANALYSIS 2:343

MULTIPLICITY-DEPENDENT EFFICIENCY344

Next, we perform a test analysis of the detector-
response correction for the response matrix which cannot
be solved exactly. As such an example, we consider the
response of a detector having a multiplicity-dependent ef-
ficiency. We consider the binomial distribution but the
e�ciency is dependent on N , i.e.

RMD(n;N) = B(n; p(N), N). (21)

4

of the Monte Carlo events, Nevent. The validity of the fits212

would be checked by setting Nevent to the same value as213

the statistics of the experimental data. When the value214

of chi-square, �2
/ndf, of these fits are close to unity with215

this statistics, there are no reasons to reject the use of216

Eq. (17). Next, the fitting results of rmj can also de-217

pend on the form of PMC(N). This suggests that one218

must check the sensitivity of the fit results on the form219

of PMC(N), or perform an iterative procedure as follows:220

1. Generate R(n;N) by a Monte-Carlo simulation221

with a presumed distribution PMC(N).222

2. Perform fits to Rm(N) with Eq. (16). One then223

obtains rmj for m, j  L. Together with the exper-224

imental results on hhnmii, one obtains the corrected225

moments hNmi.226

3. If hNmi thus obtained have large deviations from227

the moments of PMC(N), replace PMC(N) with the228

one consistent with hNmi obtained in the above229

step, and take the analysis from the top again.230

4. Repeat this iteration until PMC(N) is consistent231

with hNmi obtained by the correction.232

It, however, is expected that the result of the fits are in-233

sensitive to PMC(N), especially on the cumulants higher234

than the second order. The use of the Gaussian distri-235

bution with the mean and variance obtained by the cor-236

rection for PMC(N) would be su�cient for this analysis.237

It is also expected that a few iterations are enough for238

convergence.239

Finally, we comment on the error analysis. First, in240

the detector-response correction with Eq. (17), it is im-241

portant to reflect the correlation between the errors of242

rmj to the final result appropriately. An automatic way243

to include the correlation is the use of the bootstrap or244

jackknife analysis with the successive generation of Monte245

Carlo events. Second, in the present method it is possible246

to reduce the errors of rmj by increasing Nevent indepen-247

dently of the statistics of hhnmii. In fact, in the next248

section we will see that the suppression of the error of249

rmj is e↵ective in reducing the error of the final result.250

With increasing Nevent, however, the �2
/ndf of the fits to251

Rm(N) with Eq. (16) will eventually become unaccept-252

ably large. In this case, the analysis with the truncation253

loses its validity. In this sense, this analysis has an upper254

limit of the resolution. Third, the e↵ect of the truncation255

can be estimated by comparing the corrected results at256

the L and (L+ 1)th orders. Such analyses would require257

large statistics, but are desirable for a proper estimate on258

the systematic uncertainty of the analysis.259

IV. TEST ANALYSIS 1: EXACT MODELS260

In this and next sections, we perform test analyses for261

the detector-response correction discussed in Sec. II with262

toy models for R(n;N), and show that the corrections263

are carried out successfully in these cases.264

In this section, we first perform test analyses for the
response matrices which can be solved exactly discussed
in Sec. IID. We consider two non-binomial models for

FIG. 1. Correlation between n and N on the sample events,
i.e. the magnitude of R(n;N)P (N), for the response matrices
RHG(n;N) (hypergeometric) and R�(n;N) (beta-binomial)
with p = X/Y = 0.7 and Y = 140.

R(n;N) parametrized by the hypergeometric and beta-
binomial distributions as

RHG(n;N) = H(n;N,X, Y ), (18)

R�(n;N) = �(n;N,X, Y �X), (19)

where the hypergeometric and beta-binomial distribu-265

tions, H(n;N,X, Y ) and �(n;N, a, b), are defined in Ap-266

pendix D. The response matrices parametrized by these267

distributions are studied in Ref. [27] as examples that268

the binomial model fails in obtaining the true cumulants,269

and are good starting points for the check of the new270

method. Equations (18) and (19) approach the binomial271

model Rbin(n;N) = B(n; p,N) in the Y ! 1 limit with272

fixed p = X/Y , while the distribution of n in RHG(n;N)273

(R�(n;N)) is narrower (wider) than the binomial dis-274

tribution with finite Y . As discussed in Appendix D,275

the values of rmj in Eq. (6) are obtained analytically for276

RHG(n;N) and R�(n;N).277

The procedure of the test analysis is as follows. We278

first generate sample events ofN by assuming the Poisson279

distribution for P (N) with hNi = 40. We then specify280

the value of n for each sample event randomly accord-281

ing to the probability RHG(n;N) or R�(n;N). This al-282

lows one to obtain the moments hhnmii. These moments283

are used for the correction in Eq. (9). To proceed the284

correction, we take the following two di↵erent analyses.285

First, because the values of rmj are analytically known286

for RHG(n;N) and R�(n;N), we perform the correction287

with these values. Besides this analysis, as a second op-288

tion, we analyze hNmi with the values of rmj determined289

by the fits to Rm(N) obtained on the sample events with290

statistical errors. The second analysis supposes the cor-291

rection of realistic detectors, of which the response matrix292

is obtained only stochastically.293

In Fig. 1, we show the correlation between n and N on294

the 108 sample events by plotting the two-dimensional295

histogram as a function of n and N for the hypergeo-296

metric (RHG(n;N)) and beta-binomial (R�(n;N)) dis-297

tributions with p = 0.7 and Y = 140. (This plot thus298

represents the magnitude of R(n;N)P (N), and is usu-299

ally called the “response matrix” in literature for sim-300

plicity.) One finds from the figure that the distributions301

are clearly di↵erent between the two response matrices;302

the width of n with fixed N is narrower for RHG(n;N)303

than R�(n;N).304

In Fig. 2, we show the cumulants of the response matrix
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without	returning	balls	to	

the	urn

In	each	draw,	when	one	draws	
a	white	ball,	two	white	balls	are	

returned	to	the	urn	
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FIG. 2. Cumulants of the response matrix Cm(N) for
RHG(n;N) and R�(n;N) obtained on 108 sample events with
p = 0.7 and Y = 140. The dashed lines show the analytic val-
ues, while the dotted lines represent the fitting results with
mth-order polynomial.

Cm(N) defined by

C1(N) = R1(N), C2(N) = R2(N)� (R1(N))2, (20)

and so forth, for RHG(n;N) and R�(n;N) obtained on305

108 sample events with p = 0.7 and Y = 140 for m 306

4. The dashed lines show the analytic values, while the307

dotted lines are the fitting results with the mth-order308

polynomial. From these fits one obtains the values of309

rmj .310

In Fig. 3, we show the corrected values of the cumu-311

lants hNmic for m  4 with p = 0.7 and various values of312

Y . The left (right) panel shows the results for RHG(n;N)313

(R�(n;N)). The triangles represent the results obtained314

with the analytic values of rmj , while the results obtained315

with rmj determined by the fits to Rm(N) are shown by316

squares. 107 sample events are used to obtain hhnmii in317

both analyses, while rmj in the latter analysis are ob-318

tained with 108 sample events. Errors are estimated by319

repeating the same simulation 100 times. One finds from320

the figure that the corrected cumulants hNmic are con-321

sistent with the true value, hNmic = 40 shown by the322

dashed line, within statistics for all values of Y in both323

analyses. In Fig. 3, the uncorrected cumulants, hhnmii
c
,324

are shown by filled circles. We also show the results of325

the e�ciency correction with the binomial model with326

p = 0.7 by the stars. The results in the binomial model327

fail in reproducing the true cumulants [27], in contrast to328

the new method.329

From Fig. 3 one also finds that the statistical error330

is large when rmj are determined by the fits, although331

the statistics to determine rmj is one order larger than332

that for hhnmii. This suggests that the suppression of the333

uncertainty of rmj is crucial in reducing the error of the334

final results.335

FIG. 3. Cumulants obtained by the detector-response correc-
tion, hNmi, up to the fourth order with p = 0.7 as functions
of Y for RHG(n;N) (left) and R�(n;N) (right). The results
obtained with the analytic (fitted) values of rmj are shown
by triangles (squares). The corrected values agree with the
true cumulants hNmic = 40 shown by the dashed line within
statistics. The uncorrected cumulants hhnmii

c
and the cor-

rected results in the binomial model are also shown by circles
and stars, respectively.

Finally, we note that the fitting results of Cm(N) in336

Fig. 2 have significant deviations from the analytic val-337

ues for N & 60. Nevertheless, the final results obtained338

with these fits reproduce the true values within statistics.339

This result shows that the detector-response correction is340

carried out appropriately even if the fits do not reproduce341

Rm(N) in the range of N at which P (N) is small.342

V. TEST ANALYSIS 2:343

MULTIPLICITY-DEPENDENT EFFICIENCY344

Next, we perform a test analysis of the detector-
response correction for the response matrix which cannot
be solved exactly. As such an example, we consider the
response of a detector having a multiplicity-dependent ef-
ficiency. We consider the binomial distribution but the
e�ciency is dependent on N , i.e.

RMD(n;N) = B(n; p(N), N). (21)

4

of the Monte Carlo events, Nevent. The validity of the fits212

would be checked by setting Nevent to the same value as213

the statistics of the experimental data. When the value214

of chi-square, �2
/ndf, of these fits are close to unity with215

this statistics, there are no reasons to reject the use of216

Eq. (17). Next, the fitting results of rmj can also de-217

pend on the form of PMC(N). This suggests that one218

must check the sensitivity of the fit results on the form219

of PMC(N), or perform an iterative procedure as follows:220

1. Generate R(n;N) by a Monte-Carlo simulation221

with a presumed distribution PMC(N).222

2. Perform fits to Rm(N) with Eq. (16). One then223

obtains rmj for m, j  L. Together with the exper-224

imental results on hhnmii, one obtains the corrected225

moments hNmi.226

3. If hNmi thus obtained have large deviations from227

the moments of PMC(N), replace PMC(N) with the228

one consistent with hNmi obtained in the above229

step, and take the analysis from the top again.230

4. Repeat this iteration until PMC(N) is consistent231

with hNmi obtained by the correction.232

It, however, is expected that the result of the fits are in-233

sensitive to PMC(N), especially on the cumulants higher234

than the second order. The use of the Gaussian distri-235

bution with the mean and variance obtained by the cor-236

rection for PMC(N) would be su�cient for this analysis.237

It is also expected that a few iterations are enough for238

convergence.239

Finally, we comment on the error analysis. First, in240

the detector-response correction with Eq. (17), it is im-241

portant to reflect the correlation between the errors of242

rmj to the final result appropriately. An automatic way243

to include the correlation is the use of the bootstrap or244

jackknife analysis with the successive generation of Monte245

Carlo events. Second, in the present method it is possible246

to reduce the errors of rmj by increasing Nevent indepen-247

dently of the statistics of hhnmii. In fact, in the next248

section we will see that the suppression of the error of249

rmj is e↵ective in reducing the error of the final result.250

With increasing Nevent, however, the �2
/ndf of the fits to251

Rm(N) with Eq. (16) will eventually become unaccept-252

ably large. In this case, the analysis with the truncation253

loses its validity. In this sense, this analysis has an upper254

limit of the resolution. Third, the e↵ect of the truncation255

can be estimated by comparing the corrected results at256

the L and (L+ 1)th orders. Such analyses would require257

large statistics, but are desirable for a proper estimate on258

the systematic uncertainty of the analysis.259

IV. TEST ANALYSIS 1: EXACT MODELS260

In this and next sections, we perform test analyses for261

the detector-response correction discussed in Sec. II with262

toy models for R(n;N), and show that the corrections263

are carried out successfully in these cases.264

In this section, we first perform test analyses for the
response matrices which can be solved exactly discussed
in Sec. IID. We consider two non-binomial models for

FIG. 1. Correlation between n and N on the sample events,
i.e. the magnitude of R(n;N)P (N), for the response matrices
RHG(n;N) (hypergeometric) and R�(n;N) (beta-binomial)
with p = X/Y = 0.7 and Y = 140.

R(n;N) parametrized by the hypergeometric and beta-
binomial distributions as

RHG(n;N) = H(n;N,X, Y ), (18)

R�(n;N) = �(n;N,X, Y �X), (19)

where the hypergeometric and beta-binomial distribu-265

tions, H(n;N,X, Y ) and �(n;N, a, b), are defined in Ap-266

pendix D. The response matrices parametrized by these267

distributions are studied in Ref. [27] as examples that268

the binomial model fails in obtaining the true cumulants,269

and are good starting points for the check of the new270

method. Equations (18) and (19) approach the binomial271

model Rbin(n;N) = B(n; p,N) in the Y ! 1 limit with272

fixed p = X/Y , while the distribution of n in RHG(n;N)273

(R�(n;N)) is narrower (wider) than the binomial dis-274

tribution with finite Y . As discussed in Appendix D,275

the values of rmj in Eq. (6) are obtained analytically for276

RHG(n;N) and R�(n;N).277

The procedure of the test analysis is as follows. We278

first generate sample events ofN by assuming the Poisson279

distribution for P (N) with hNi = 40. We then specify280

the value of n for each sample event randomly accord-281

ing to the probability RHG(n;N) or R�(n;N). This al-282

lows one to obtain the moments hhnmii. These moments283

are used for the correction in Eq. (9). To proceed the284

correction, we take the following two di↵erent analyses.285

First, because the values of rmj are analytically known286

for RHG(n;N) and R�(n;N), we perform the correction287

with these values. Besides this analysis, as a second op-288

tion, we analyze hNmi with the values of rmj determined289

by the fits to Rm(N) obtained on the sample events with290

statistical errors. The second analysis supposes the cor-291

rection of realistic detectors, of which the response matrix292

is obtained only stochastically.293

In Fig. 1, we show the correlation between n and N on294

the 108 sample events by plotting the two-dimensional295

histogram as a function of n and N for the hypergeo-296

metric (RHG(n;N)) and beta-binomial (R�(n;N)) dis-297

tributions with p = 0.7 and Y = 140. (This plot thus298

represents the magnitude of R(n;N)P (N), and is usu-299

ally called the “response matrix” in literature for sim-300

plicity.) One finds from the figure that the distributions301

are clearly di↵erent between the two response matrices;302

the width of n with fixed N is narrower for RHG(n;N)303

than R�(n;N).304

In Fig. 2, we show the cumulants of the response matrix

Draw	N	balls	from	the	urn	
without	returning	balls	to	

the	urn

In	each	draw,	when	one	draws	
a	white	ball,	two	white	balls	are	

returned	to	the	urn	

T.	Nonaka,	M.	Kitazawa,	S.	Esumi,	Nucl.Instrum.Meth.	A906	(2018)	10-17
T.	Nonaka,	M.	Kitazawa,	S.	Esumi,	Phys.	Rev.	C	95,	064912	(2017)
Adam	Bzdak,	Volker	Koch,	Phys.	Rev.	C86,	044904	(2012)
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FIG. 2. Cumulants of the response matrix Cm(N) for
RHG(n;N) and R�(n;N) obtained on 108 sample events with
p = 0.7 and Y = 140. The dashed lines show the analytic val-
ues, while the dotted lines represent the fitting results with
mth-order polynomial.

Cm(N) defined by

C1(N) = R1(N), C2(N) = R2(N)� (R1(N))2, (20)

and so forth, for RHG(n;N) and R�(n;N) obtained on305

108 sample events with p = 0.7 and Y = 140 for m 306

4. The dashed lines show the analytic values, while the307

dotted lines are the fitting results with the mth-order308

polynomial. From these fits one obtains the values of309

rmj .310

In Fig. 3, we show the corrected values of the cumu-311

lants hNmic for m  4 with p = 0.7 and various values of312

Y . The left (right) panel shows the results for RHG(n;N)313

(R�(n;N)). The triangles represent the results obtained314

with the analytic values of rmj , while the results obtained315

with rmj determined by the fits to Rm(N) are shown by316

squares. 107 sample events are used to obtain hhnmii in317

both analyses, while rmj in the latter analysis are ob-318

tained with 108 sample events. Errors are estimated by319

repeating the same simulation 100 times. One finds from320

the figure that the corrected cumulants hNmic are con-321

sistent with the true value, hNmic = 40 shown by the322

dashed line, within statistics for all values of Y in both323

analyses. In Fig. 3, the uncorrected cumulants, hhnmii
c
,324

are shown by filled circles. We also show the results of325

the e�ciency correction with the binomial model with326

p = 0.7 by the stars. The results in the binomial model327

fail in reproducing the true cumulants [27], in contrast to328

the new method.329

From Fig. 3 one also finds that the statistical error330

is large when rmj are determined by the fits, although331

the statistics to determine rmj is one order larger than332

that for hhnmii. This suggests that the suppression of the333

uncertainty of rmj is crucial in reducing the error of the334

final results.335

FIG. 3. Cumulants obtained by the detector-response correc-
tion, hNmi, up to the fourth order with p = 0.7 as functions
of Y for RHG(n;N) (left) and R�(n;N) (right). The results
obtained with the analytic (fitted) values of rmj are shown
by triangles (squares). The corrected values agree with the
true cumulants hNmic = 40 shown by the dashed line within
statistics. The uncorrected cumulants hhnmii

c
and the cor-

rected results in the binomial model are also shown by circles
and stars, respectively.

Finally, we note that the fitting results of Cm(N) in336

Fig. 2 have significant deviations from the analytic val-337

ues for N & 60. Nevertheless, the final results obtained338

with these fits reproduce the true values within statistics.339

This result shows that the detector-response correction is340

carried out appropriately even if the fits do not reproduce341

Rm(N) in the range of N at which P (N) is small.342

V. TEST ANALYSIS 2:343

MULTIPLICITY-DEPENDENT EFFICIENCY344

Next, we perform a test analysis of the detector-
response correction for the response matrix which cannot
be solved exactly. As such an example, we consider the
response of a detector having a multiplicity-dependent ef-
ficiency. We consider the binomial distribution but the
e�ciency is dependent on N , i.e.

RMD(n;N) = B(n; p(N), N). (21)

4

of the Monte Carlo events, Nevent. The validity of the fits212

would be checked by setting Nevent to the same value as213

the statistics of the experimental data. When the value214

of chi-square, �2
/ndf, of these fits are close to unity with215

this statistics, there are no reasons to reject the use of216

Eq. (17). Next, the fitting results of rmj can also de-217

pend on the form of PMC(N). This suggests that one218

must check the sensitivity of the fit results on the form219

of PMC(N), or perform an iterative procedure as follows:220

1. Generate R(n;N) by a Monte-Carlo simulation221

with a presumed distribution PMC(N).222

2. Perform fits to Rm(N) with Eq. (16). One then223

obtains rmj for m, j  L. Together with the exper-224

imental results on hhnmii, one obtains the corrected225

moments hNmi.226

3. If hNmi thus obtained have large deviations from227

the moments of PMC(N), replace PMC(N) with the228

one consistent with hNmi obtained in the above229

step, and take the analysis from the top again.230

4. Repeat this iteration until PMC(N) is consistent231

with hNmi obtained by the correction.232

It, however, is expected that the result of the fits are in-233

sensitive to PMC(N), especially on the cumulants higher234

than the second order. The use of the Gaussian distri-235

bution with the mean and variance obtained by the cor-236

rection for PMC(N) would be su�cient for this analysis.237

It is also expected that a few iterations are enough for238

convergence.239

Finally, we comment on the error analysis. First, in240

the detector-response correction with Eq. (17), it is im-241

portant to reflect the correlation between the errors of242

rmj to the final result appropriately. An automatic way243

to include the correlation is the use of the bootstrap or244

jackknife analysis with the successive generation of Monte245

Carlo events. Second, in the present method it is possible246

to reduce the errors of rmj by increasing Nevent indepen-247

dently of the statistics of hhnmii. In fact, in the next248

section we will see that the suppression of the error of249

rmj is e↵ective in reducing the error of the final result.250

With increasing Nevent, however, the �2
/ndf of the fits to251

Rm(N) with Eq. (16) will eventually become unaccept-252

ably large. In this case, the analysis with the truncation253

loses its validity. In this sense, this analysis has an upper254

limit of the resolution. Third, the e↵ect of the truncation255

can be estimated by comparing the corrected results at256

the L and (L+ 1)th orders. Such analyses would require257

large statistics, but are desirable for a proper estimate on258

the systematic uncertainty of the analysis.259

IV. TEST ANALYSIS 1: EXACT MODELS260

In this and next sections, we perform test analyses for261

the detector-response correction discussed in Sec. II with262

toy models for R(n;N), and show that the corrections263

are carried out successfully in these cases.264

In this section, we first perform test analyses for the
response matrices which can be solved exactly discussed
in Sec. IID. We consider two non-binomial models for

FIG. 1. Correlation between n and N on the sample events,
i.e. the magnitude of R(n;N)P (N), for the response matrices
RHG(n;N) (hypergeometric) and R�(n;N) (beta-binomial)
with p = X/Y = 0.7 and Y = 140.

R(n;N) parametrized by the hypergeometric and beta-
binomial distributions as

RHG(n;N) = H(n;N,X, Y ), (18)

R�(n;N) = �(n;N,X, Y �X), (19)

where the hypergeometric and beta-binomial distribu-265

tions, H(n;N,X, Y ) and �(n;N, a, b), are defined in Ap-266

pendix D. The response matrices parametrized by these267

distributions are studied in Ref. [27] as examples that268

the binomial model fails in obtaining the true cumulants,269

and are good starting points for the check of the new270

method. Equations (18) and (19) approach the binomial271

model Rbin(n;N) = B(n; p,N) in the Y ! 1 limit with272

fixed p = X/Y , while the distribution of n in RHG(n;N)273

(R�(n;N)) is narrower (wider) than the binomial dis-274

tribution with finite Y . As discussed in Appendix D,275

the values of rmj in Eq. (6) are obtained analytically for276

RHG(n;N) and R�(n;N).277

The procedure of the test analysis is as follows. We278

first generate sample events ofN by assuming the Poisson279

distribution for P (N) with hNi = 40. We then specify280

the value of n for each sample event randomly accord-281

ing to the probability RHG(n;N) or R�(n;N). This al-282

lows one to obtain the moments hhnmii. These moments283

are used for the correction in Eq. (9). To proceed the284

correction, we take the following two di↵erent analyses.285

First, because the values of rmj are analytically known286

for RHG(n;N) and R�(n;N), we perform the correction287

with these values. Besides this analysis, as a second op-288

tion, we analyze hNmi with the values of rmj determined289

by the fits to Rm(N) obtained on the sample events with290

statistical errors. The second analysis supposes the cor-291

rection of realistic detectors, of which the response matrix292

is obtained only stochastically.293

In Fig. 1, we show the correlation between n and N on294

the 108 sample events by plotting the two-dimensional295

histogram as a function of n and N for the hypergeo-296

metric (RHG(n;N)) and beta-binomial (R�(n;N)) dis-297

tributions with p = 0.7 and Y = 140. (This plot thus298

represents the magnitude of R(n;N)P (N), and is usu-299

ally called the “response matrix” in literature for sim-300

plicity.) One finds from the figure that the distributions301

are clearly di↵erent between the two response matrices;302

the width of n with fixed N is narrower for RHG(n;N)303

than R�(n;N).304

In Fig. 2, we show the cumulants of the response matrix
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FIG. 2. Cumulants of the response matrix Cm(N) for
RHG(n;N) and R�(n;N) obtained on 108 sample events with
p = 0.7 and Y = 140. The dashed lines show the analytic val-
ues, while the dotted lines represent the fitting results with
mth-order polynomial.

Cm(N) defined by

C1(N) = R1(N), C2(N) = R2(N)� (R1(N))2, (20)

and so forth, for RHG(n;N) and R�(n;N) obtained on305

108 sample events with p = 0.7 and Y = 140 for m 306

4. The dashed lines show the analytic values, while the307

dotted lines are the fitting results with the mth-order308

polynomial. From these fits one obtains the values of309

rmj .310

In Fig. 3, we show the corrected values of the cumu-311

lants hNmic for m  4 with p = 0.7 and various values of312

Y . The left (right) panel shows the results for RHG(n;N)313

(R�(n;N)). The triangles represent the results obtained314

with the analytic values of rmj , while the results obtained315

with rmj determined by the fits to Rm(N) are shown by316

squares. 107 sample events are used to obtain hhnmii in317

both analyses, while rmj in the latter analysis are ob-318

tained with 108 sample events. Errors are estimated by319

repeating the same simulation 100 times. One finds from320

the figure that the corrected cumulants hNmic are con-321

sistent with the true value, hNmic = 40 shown by the322

dashed line, within statistics for all values of Y in both323

analyses. In Fig. 3, the uncorrected cumulants, hhnmii
c
,324

are shown by filled circles. We also show the results of325

the e�ciency correction with the binomial model with326

p = 0.7 by the stars. The results in the binomial model327

fail in reproducing the true cumulants [27], in contrast to328

the new method.329

From Fig. 3 one also finds that the statistical error330

is large when rmj are determined by the fits, although331

the statistics to determine rmj is one order larger than332

that for hhnmii. This suggests that the suppression of the333

uncertainty of rmj is crucial in reducing the error of the334

final results.335

FIG. 3. Cumulants obtained by the detector-response correc-
tion, hNmi, up to the fourth order with p = 0.7 as functions
of Y for RHG(n;N) (left) and R�(n;N) (right). The results
obtained with the analytic (fitted) values of rmj are shown
by triangles (squares). The corrected values agree with the
true cumulants hNmic = 40 shown by the dashed line within
statistics. The uncorrected cumulants hhnmii

c
and the cor-

rected results in the binomial model are also shown by circles
and stars, respectively.

Finally, we note that the fitting results of Cm(N) in336

Fig. 2 have significant deviations from the analytic val-337

ues for N & 60. Nevertheless, the final results obtained338

with these fits reproduce the true values within statistics.339

This result shows that the detector-response correction is340

carried out appropriately even if the fits do not reproduce341

Rm(N) in the range of N at which P (N) is small.342

V. TEST ANALYSIS 2:343

MULTIPLICITY-DEPENDENT EFFICIENCY344

Next, we perform a test analysis of the detector-
response correction for the response matrix which cannot
be solved exactly. As such an example, we consider the
response of a detector having a multiplicity-dependent ef-
ficiency. We consider the binomial distribution but the
e�ciency is dependent on N , i.e.

RMD(n;N) = B(n; p(N), N). (21)



15Mesut	Arslandok,	Yale	UniversityRHIC	BES	and	Beyond,	16.08.2021

ALI-SIMUL-314715ALI-SIMUL-314705

Ø Monte-Carlo	(MC)	closure	test	is	successful	even	though	there	is	slight	deviation	from	binomial	detector	response
Ø Realistic	MC	description	and	track	selection	criteria	are	crucial

Efficiency	correction
Efficiency	correction	with	binomial	assumption:
T.	Nonaka,	M.	Kitazawa,	S.	Esumi,	Phys.	Rev.	C	95,	064912	(2017)
Adam	Bzdak,	Volker	Koch,	Phys.	Rev.	C86,	044904	(2012)
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chosen to be 33 mb. The number of participant nucleons, Npart, and binary collisions, Ncoll, are obtained. In order to
propagate Npart and Ncoll to the multiplicity, we define the number of sources, Nsc as

Nsc = (1� x)Npart + xNcoll, (29)

where x is the fraction of the hard component. We choose x = 0.1 for the simulation. Particles are then generated
from each source Nsc based on the negative binomial distribution:

Pµ,k(N) =
�(N + k)

�(N + 1)�(k)
·

(µ/k)N

(µ/k + 1)N+k
, (30)

where µ is the mean value of particles generated from one source, and k corresponds to the inverse of width of the
distribution. µ = 1.0 and k = 1.0 are chosen for the simulation. In order to simulate the pileup events as well as
normal single-collision events, multiplicities from two collision events are randomly superimposed with the probability
↵ = 0.05. In this way, 10 million Au+Au collision events are processed. We note that in this model the pileup
probabilities wi,j and ↵m are given by Eqs. 5 and 6 by construction.
The resulting multiplicity distribution is shown by the black line in Fig. 1. The blue squares show the multiplicity

distribution from single-collision events, while those from pileup events are shown by the red circles. It is found that,
due to the pileup events, the measured distribution has the tail on top of the distribution from the single-collision
events. The inset panel shows ↵m, i.e. the ratio of the pileup events at multiplicity m. From the panel one finds that
↵m grows with increasing m. This behavior suggests that the e↵ect of pileup events are more problematic in central
collisions rather than peripheral collisions.
In Fig. 2, we plot the multiplicity distribution of single-collision events T (m) and the number of sub-pileup events

(i, j) normalized by total simulated events, ↵T (i)T (j). From these results wi,j and ↵m are constructed according to
Eqs. 5 and 6. These parameters are used in the following two subsections.
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FIG. 1. The multiplicity distribution generated from the Glauber and two component model. The black line includes the
contribution from pileup events with ↵ = 0.05 (measured distribution). The red open circles are the distribution from pileup
events, and the blue squares are from the normal single collision events. The bands indicate 0-5%, 5-10% and 70-80% centralities.
The inset panel shows the ratio of pileup to measured distributions as a function of multiplicity (↵m).

B. Simple case

In this and next subsections, we discuss the pileup correction for two model distributions P t
m(N) with the multiplicity

distribution obtained in Sec. III A. In this subsection, we consider a simple model where the particle number N obeys
the Poisson distribution with the mean value of 10 at all the multiplicity bin. We emphasize that this model is totally
impractical, because 10 particles on average are created at both m = 0 and m = 300. However, this model is suitable
to demonstrate the validity of the recursive correction procedures. The more realistic model will be discussed in the
next subsection.
Figure 3 shows the particle distribution for the first 4 multiplicity bins (m = 0, 1, 2, 3). The red circles show pileup

events, and the blue squares show the single-collision events. The measured distribution given by the sum of these

T.	Nonaka,	M.	Kitazawa,	S.	Esumi,	Nucl.Instrum.Meth.	A984	(2020)

Ø Event	pileup:	When	two	collision	events	occur	within	
a	small	space	and	time	interval,	they	are	identified	as	
a	single	event

Ø Significant	impact	on	the	higher	order	cumulants
Ø Event	selection	criteria	is	crucial

Event	pileup
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chosen to be 33 mb. The number of participant nucleons, Npart, and binary collisions, Ncoll, are obtained. In order to
propagate Npart and Ncoll to the multiplicity, we define the number of sources, Nsc as

Nsc = (1� x)Npart + xNcoll, (29)

where x is the fraction of the hard component. We choose x = 0.1 for the simulation. Particles are then generated
from each source Nsc based on the negative binomial distribution:

Pµ,k(N) =
�(N + k)

�(N + 1)�(k)
·

(µ/k)N

(µ/k + 1)N+k
, (30)

where µ is the mean value of particles generated from one source, and k corresponds to the inverse of width of the
distribution. µ = 1.0 and k = 1.0 are chosen for the simulation. In order to simulate the pileup events as well as
normal single-collision events, multiplicities from two collision events are randomly superimposed with the probability
↵ = 0.05. In this way, 10 million Au+Au collision events are processed. We note that in this model the pileup
probabilities wi,j and ↵m are given by Eqs. 5 and 6 by construction.
The resulting multiplicity distribution is shown by the black line in Fig. 1. The blue squares show the multiplicity

distribution from single-collision events, while those from pileup events are shown by the red circles. It is found that,
due to the pileup events, the measured distribution has the tail on top of the distribution from the single-collision
events. The inset panel shows ↵m, i.e. the ratio of the pileup events at multiplicity m. From the panel one finds that
↵m grows with increasing m. This behavior suggests that the e↵ect of pileup events are more problematic in central
collisions rather than peripheral collisions.
In Fig. 2, we plot the multiplicity distribution of single-collision events T (m) and the number of sub-pileup events

(i, j) normalized by total simulated events, ↵T (i)T (j). From these results wi,j and ↵m are constructed according to
Eqs. 5 and 6. These parameters are used in the following two subsections.
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FIG. 1. The multiplicity distribution generated from the Glauber and two component model. The black line includes the
contribution from pileup events with ↵ = 0.05 (measured distribution). The red open circles are the distribution from pileup
events, and the blue squares are from the normal single collision events. The bands indicate 0-5%, 5-10% and 70-80% centralities.
The inset panel shows the ratio of pileup to measured distributions as a function of multiplicity (↵m).

B. Simple case

In this and next subsections, we discuss the pileup correction for two model distributions P t
m(N) with the multiplicity

distribution obtained in Sec. III A. In this subsection, we consider a simple model where the particle number N obeys
the Poisson distribution with the mean value of 10 at all the multiplicity bin. We emphasize that this model is totally
impractical, because 10 particles on average are created at both m = 0 and m = 300. However, this model is suitable
to demonstrate the validity of the recursive correction procedures. The more realistic model will be discussed in the
next subsection.
Figure 3 shows the particle distribution for the first 4 multiplicity bins (m = 0, 1, 2, 3). The red circles show pileup

events, and the blue squares show the single-collision events. The measured distribution given by the sum of these
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T.	Nonaka,	M.	Kitazawa,	S.	Esumi,	Nucl.Instrum.Meth.	A984	(2020)

Ø Event	pileup:	When	two	collision	events	occur	within	
a	small	space	and	time	interval,	they	are	identified	as	
a	single	event

Ø Significant	impact	on	the	higher	order	cumulants
Ø Event	selection	criteria	is	crucial

Event	pileup
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Particle-Set	Identification	method	
Identity	Method	

+	
solution	to	“correlations	between	dE/dx	measurements	of	different	particles”

Two-particle	distribution	ρ(x1,	x2 )	for	pions	(x→ dE/dx)	
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Figure 4: (Color online) Upper panel: Results for the second moments of pions as computed

with the PSET method (open boxes) and the Identity method (solid lines). The value of

the correlation coe�cient is taken to be R = 0.5 (cf. right panel of Fig. 2). The analytical

calculation is represented with the dashed line. Bottom panel: The ratios of the second

moments of pions as computed with the PSET method to the theoretical baseline (open

boxes). Similar ratios for the Identity method are presented with the solid lines.

matrix ⌃ are defined as145

x =

0

@x1

x2

1

A , hxi =

0

@hx1i

hx2i

1

A ,⌃ =

0

@ �2
x1

R�x1�x2

R�x1�x2 �2
x2

1

A . (22)

The dimensionless parameter R, referred to as the correlation coe�cient, is

introduced as

R =
h(x1 � hx1i)(x2 � hx2i)i

�x1�x2

. (23)

We further note that the correlations between x1 and x2 are introduced only if

they belong to the same particle, otherwise they are generated independently,

i.e., the value of the correlation coe�cient R is set to zero in this case. Each150

generated ith event contains a set of quantities X = {x1, x2, ..., xNi}, where Ni

12

M.Gazdzicki,	M.I.Gorenstein,	M.Pawlowska,	A.Rustamov,	Nuclear	Physics	A	1001	(2020)	121915



18Mesut	Arslandok,	Yale	UniversityRHIC	BES	and	Beyond,	16.08.2021

Particle-Set	Identification	method	

Ø 1	nb-1	of	Pb−Pb	collisions
Ø ≈1	kHz	Pb−Pb	minimum	bias	readout	rate
Ø MWPC based	TPC
Ø ITS	with	6	layers
Ø Offline	reconstruction	

Run	1	&	Run	2

Ø 13	nb-1	of	Pb−Pb	collisions	
Ø ≈50	kHz	Pb−Pb minimum	bias	readout	rate
Ø GEM based	TPC
Ø ITS	with	7	layers
Ø Online	reconstruction

Run	3	&	Run	4	(beyond	2021)

LS2	Upgrade
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Particle-Set	Identification	method	

R=0.1 R=0.5

Ø So	far	Identity	Method	performs	well	with	Run	1/2	data
Ø PSET could	be	and	option	for	Run	3/4

Ø 1	nb-1	of	Pb−Pb	collisions
Ø ≈1	kHz	Pb−Pb	minimum	bias	readout	rate
Ø MWPC based	TPC
Ø ITS	with	6	layers
Ø Offline	reconstruction	

Run	1	&	Run	2

Ø 13	nb-1	of	Pb−Pb	collisions	
Ø ≈50	kHz	Pb−Pb minimum	bias	readout	rate
Ø GEM based	TPC
Ø ITS	with	7	layers
Ø Online	reconstruction

Run	3	&	Run	4	(beyond	2021)

LS2	Upgrade

M.Gazdzicki,	M.I.Gorenstein,	M.Pawlowska,	A.Rustamov,	Nuclear	Physics	A	1001	(2020)	121915
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Summary:	Current	status

Mesut	Arslandok,	Yale	UniversityRHIC	BES	and	Beyond,	16.08.2021

Ø Physics	interpretation:	Volume	fluctuations,	resonance	contributions,	baryon	number	conservation,	
effect	of	hydrodynamic	evolution,	baryon	stopping,	deuteron	formation	…
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Ø Physics	interpretation:	Volume	fluctuations,	resonance	contributions,	baryon	number	conservation,	
effect	of	hydrodynamic	evolution,	baryon	stopping,	deuteron	formation	…

Ø Net-Q	fluctuations:	Strongly	dominated	by	resonance	contributions	
Ø Net-p	fluctuations:

ü 1st order:	𝑇NOPQRST ~	𝑇UV
QWSX

ü 2nd order:	Deviation	from	Skellam	baseline	is	due	to baryon	number	conservation
• ALICE	data	suggests	long	range	correlations

ü 3rd order:	Agrees	with	Skellam	baseline	“0”	as	a	function	of	centrality	and	pseudorapidity
• Achieved	precision	of	better	than	5%	for	the	𝜅Y/𝜅= results	is	promising	for	the	higher	order	cumulants
• Up	to	3rd order	ALICE	data	agree	with	the	LQCD	expectations

o 4th and	higher	order:	Ongoing	analysis	with	Identity	Method	(or	PSET	method)

Ø Net-𝚲 fluctuations:
ü 2nd order:	Similar	trend	as	for	net-p	→	Better	precision	is	needed	to	see	the	impact	of	strangeness	conservation	
o 3rd and	higher	order:	Ongoing	analysis	with	Identity	method	(or	PSET	method)
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Ø Physics	interpretation:	Volume	fluctuations,	resonance	contributions,	baryon	number	conservation,	
effect	of	hydrodynamic	evolution,	baryon	stopping,	deuteron	formation	…
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ü 1st order:	𝑇NOPQRST ~	𝑇UV
QWSX

ü 2nd order:	Deviation	from	Skellam	baseline	is	due	to baryon	number	conservation
• ALICE	data	suggests	long	range	correlations

ü 3rd order:	Agrees	with	Skellam	baseline	“0”	as	a	function	of	centrality	and	pseudorapidity
• Achieved	precision	of	better	than	5%	for	the	𝜅Y/𝜅= results	is	promising	for	the	higher	order	cumulants
• Up	to	3rd order	ALICE	data	agree	with	the	LQCD	expectations

o 4th and	higher	order:	Ongoing	analysis	with	Identity	Method	(or	PSET	method)

Ø Net-𝚲 fluctuations:
ü 2nd order:	Similar	trend	as	for	net-p	→	Better	precision	is	needed	to	see	the	impact	of	strangeness	conservation	
o 3rd and	higher	order:	Ongoing	analysis	with	Identity	method	(or	PSET	method)

Ø Experimental	Challenges:
ü Efficiency	correction	
ü Event	pileup
ü Correlations	between	dE/dx	measurements	

of	different	particles

q Event/track	selection
q Correction/analysis	methods
q Realistic	detector	simulation
q …
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units of the magnitudes of the statistical uncertainty (�). As seen from the left panel of Fig. 7, for 4/2
already 10 million events are sufficient to distinguish the expected critical fluctuations signal from unity
with a statistical significance of 4�. Similar conclusions are obtained with the Pearson curve method.
Several times this amount of data has already been recorded by ALICE, and the expected statistics in
Runs 3 and 4 will make it possible to measure 4/2 with unprecedented precision.

For 6/2, however, significantly larger event sample is needed. As seen from the right panel of
Fig. 7, more than 5 billion 0-5 % central events generated with the double Gaussian approach are needed
in order to observe statistically significant deviations from unity in favor of the critical values indicated
with the red dashed line. These would correspond to a minimum bias Pb–Pb integrated luminosity
of 12.5 nb�1 in Runs 3 and 4. Results obtained with the Pearson curve method indicate that more
than 200 million 0-5 % central events (corresponding to a minimum bias Pb–Pb integrated luminosity
of 0.5 nb�1) would be sufficient in order to claim a significant deviation from unity in favour of the
corresponding expected value. This difference in the estimation of the required statistics for 6/2 comes
mainly from the different baseline values of -1.43 and -0.27 used in the Pearson and double-Gaussian
methods, respectively. In addition, the value of 2 used in the Pearson method is about two times smaller
than measured in the experiment and used in the double Gaussian method. Track reconstruction and
particle identification efficiency in the fiducial acceptance in ⌘ and pT efficiencies, which would increase
the required number of events for a given statistical precision, are not included in the study presented
here because they depend on the details of the analysis. Considering that these efficiencies are expected
to range from 60% to 80%, we conclude that the Pb–Pb integrated luminosity of 13 nb�1 foreseen in
Runs 3 and 4 (see Ch. 12) will be sufficient to probe the critical phenomena contained in 6/2.
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Fig. 7: Simulated values of 4/2 (left panel) and 6/2 (right panel) as functions of the generated
number of events. Full symbols represent results obtained with the double Gaussian approach adjusted
to reproduce critical fluctuations (CF) predicted in the PQM model [150]. Open symbols are obtained
with the Pearson Curve Method [166].

36

arXiv:1812.06772;	CERN
-LPCC-2018-07

Ø New	ITS (better	vertexing)	and	TPC (continuous	readout	with	GEM	technology)
Ø Record	minimum-bias	Pb-Pb	data	at	50kHz		→ Order	of	magnitude	more	events

Outlook:	After	ALICE	upgrade

ü 6th order	and	maybe	beyond	
Polyakov-loop	extended	Quark- Meson	model	(PQM),	G.	A.	Almasi,	B.	Friman,	and	K.	Redlich,	Phys.	Rev.D96(2017)	no.	1,	014027

Pearson	Curve	Method,	N.	K.	Behera,	arXiv:1706.06558	[nucl-ex]
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2nd order	cumulants	of	net-p

Ø Consistent	with	the	baryon	number	conservation	picture		
• Increase	in	fraction	of	accepted	p, p; ->	stronger	constraint	of	fluctuations	due	to	baryon	number	conservation

Ø EPOS	&	HIJING	show	this	drop	qualitatively

Mesut	Arslandok,	Yale	UniversityRHIC	BES	and	Beyond,	16.08.2021



Ø Deviation	from	Skellam	baseline	is	due	to baryon	number	conservation
Ø ALICE	data	suggest	long	range	correlations,	∆𝑦 = ±2.5	unit or	longer

24

2nd order	cumulants	of	net-p

Mesut	Arslandok,	Yale	UniversityRHIC	BES	and	Beyond,	16.08.2021
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C3/C2 and	C4/C2 agree	with	Skellam	at	LHC	energies?
• Small	acceptance
• Low	statistics
• Cut-based	approach	for	PID

Analysis	within	a	larger	kinematic	acceptance	using	Identity	Method	is	in	progress

3

For	a	thermal	system	in	a	fixed	volume	V	within	the	Grand	Canonical	Ensemble

Mesut	Arslandok,	Heidelberg	(PI)

  

F. Karsch, Quark Matter  2017 F. Karsch, Quark Matter  2017 18

– – agreement between HRG and QCD will start to deteriorate for T>150 MeVagreement between HRG and QCD will start to deteriorate for T>150 MeV

– – net baryon-number fluctuations in QCD always smaller than in HRG fornet baryon-number fluctuations in QCD always smaller than in HRG for
      T>150 MeVT>150 MeV
      

for simplicity:

HRG vs. QCDHRG vs. QCD
net baryon-number fluctuations  net baryon-number fluctuations  

Phys.	Rev.	D	95	(2017),	0545042nd 4th 6th

Why	net-baryon fluctuations?

Cumulants

P
T 4 =

1
VT 3 lnZ V ,T ,µB ,Q ,S( ) χ̂n

N=B ,S ,Q =
∂n P T 4

∂ µN T( )
n

Susceptibilities

χ̂4
B

χ̂2
B=κ 4 ΔNB( )

κ 2 ΔNB( )χ̂2
B =

κ 2 ΔNB( )
VT 3

Higher	orders	
P.	Braun-Munzinger,	A.	Rustamov,		J.	Stachel

Nuclear	Physics	A	960	(2017)	114–130

Ø At	4th order	LQCD	shows	a	deviation from	Hadron	Resonance	Gas	(HRG)	

SQM,	11.06.2019
25

Net-protons, Higher cumulants

A. Rustamov, CPOD2018, 24-28 September 2018, Corfu, Greece

Both ALICE and STAR attempting to improve pT acceptance

measured with the traditional approach in a rather small pT acceptance
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ALICE, QM18,  arXiv:1807.06780

Nirbhay Kubera,	QM18,	NPA	982	(2019)	851

31Mesut	Arslandok,	Heidelberg	(PI)

Ø C3/C2 and	C4/C2 agree	with	Skellam	at	LHC	energies?
• Cut-based	approach
• Small	acceptance

3rd and	4th order	cumulants	of	net-p	at	LHC

Analysis	within	a	larger	kinematic	acceptance	using	Identity	Method	is	in	progress

QSEC,	26.09.2019
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For	a	thermal	system	in	a	fixed	volume	V	within	the	Grand	Canonical	Ensemble
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Ø At	4th order	LQCD	shows	a	deviation from	Hadron	Resonance	Gas	(HRG)	

SQM,	11.06.2019

Some 6th order cumulants 15

[HotQCD, preliminary (2019)]             

large deviations from non-interacting HRG model

6th order cumulants of baryon number fluctuations 
and their correlations with electric charge are 
negative at the pseudo-critical temperature

RUN	1:	2nd order	(~13M	min.	bias	events)
RUN	2:	4th order	(~150M	central	events)
RUN	3:	6th and	higher	order? (>1000M	central	events)

Holy	grail:	see	critical	behavior	in	6th and	higher	order	cumulants

26Mesut	Arslandok,	Yale	UniversityRHIC	BES	and	Beyond,	16.08.2021
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Lines of constant physics and chemical freeze-out / hadronization
Thermal conditions at chemical freeze-out / hadronization characterized

by lines of constant pressure, energy and entropy densities?

compare well with estimates of the crossover line: 
[Bielefeld-BNL-CCNU (2011), Endrodi et a. (2011), 
Bellwied et al. (2015), Cea et al. (2016), Bonati et al. (2015)]
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B
2 = 0.012(4)

<latexit sha1_base64="NQn3p/wiCK0Ks3j1HALAs0oUup0="></latexit>

[A. Andronic et al.,
Nature 561(2018)321](156.5± 1.5) MeV

<latexit sha1_base64="i5KklWrz7bTUAS/XR93v+Br6gxQ="></latexit>

at µB = 0
<latexit sha1_base64="benCvODCCQ0ksfpWbMYtyCVRZ6A="></latexit>

A.	Bazavov et	al.	(HotQCD),PLB795(2019)15	
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Technical details 

A. Rustamov, EMMI workshop on fluctuations, China, Wuhan, 10-13 October, 2017 
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P. Braun-Munzinger, A. R.,  J. Stachel, QM18, NPA 982 (2019) 307-310

Fluctuations of conserved charges

A. Rustamov, 28.03.2019

P.	Braun-Munzinger,	A.	Rustamov,	J.	Stachel,	QM18,	NPA	982	(2019)	307-310
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A. Rustamov, CPOD2018, 24-28 September 2018, Corfu, Greece
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+     =      ≠
• correlation term?
• non Poisson (anti)protons?
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Net-protons, Higher cumulants

A. Rustamov, CPOD2018, 24-28 September 2018, Corfu, Greece

Both ALICE and STAR attempting to improve pT acceptance

measured with the traditional approach in a rather small pT acceptance
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ωπ
(1) =1,   ωπ

(2) ≅ 0.6,   ωπ
(3) = 0,   ωπ

(4) = 0  ⇒  Wπ =1.6 ≠ Nπ

A.	Rustamov,	M.	Gazdzicki,	M.	I.	Gorenstein,	PRC	86,	044906	(2012),	PRC	84,	024902	(2011)
A.	Rustamov,	M.	Arslandok,	arXiv:1807.06370,	NIM	in	print

Cut-based	approach:	count	tracks of	a	given	particle	type
Identity	method:								count	probabilities to	be	of	a	given	particle	type
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Ø Cut-based	approach	
• Uses	additional	detector	information	or	reject	a	given	phase	space	bin
• Challenge:	efficiency	correction	and	contamination

Ø Identity	Method	
• Gives	folded	multiplicity	distribution	
• Allows	for	larger	efficiencies	à smaller	correction	needed
• Ideal	approach	for	low	momentum	(p<2	GeV/c)

12Mesut	Arslandok,	Heidelberg	(PI)

A. Rustamov, EMMI Workshop, 25-29 March, 2019, GSI.
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single event example : 3 protons, 2 kaons

Identity method approach

16

Analysis technique

Ø Cut	based	approach	
• Use	additional	detector	information	or	reject	a	given	phase	space	bin
• Challenge:	efficiency	correction	and	contamination

Ø Identity	Method	
• Gives	folded	multiplicity	distribution	
• Easier	to	correct	inefficiencies
• Ideal	approach	for	low	momentum	(p<2	GeV/c)

>?@ =	ABC D?@

SQM,	11.06.2019

Cut	based vs	Identity	method

𝑁]^ =	A`a 𝑊]^
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Experimental approach
measurement of fluctuations of other baryons
to improve understanding of net-baryon baseline
to study correlated baryon-strangeness fluctuations

Phenomenological approach

due to isospin randomization at !"" > 10&'(

in this case net-baryon fluctuations can be easily 
obtained from corresponding net-proton measurements
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Ø Net-baryon	vs	Net-p
Ø Due	to	isospin	randomization at	 566� >	10	GeV

net-baryon	fluctuations	can	be	easily	obtained	
from	corresponding	net-proton	measurements	
M.	Kitazawa,	and	M.	Asakawa,	Phys.	Rev.	C86	(2012)

P.	Braun-Munzinger,	A.	Rustamov,	J.	Stachel
QM18,	NPA	982	(2019)	307-310	

Effects	from	conservation	laws	

o Effect	of	baryon	number	conservation	
has	to	be	taken	into	account	

o Proper	conversion	from	net-p	to	net-baryon

ALI-SIMUL-314695

SQM,	11.06.2019
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Ø Net-baryon	vs	Net-p
Ø Due	to	isospin	randomization at	 566� >	10	GeV

net-baryon	fluctuations	can	be	easily	obtained	
from	corresponding	net-proton	measurements	
M.	Kitazawa,	and	M.	Asakawa,	Phys.	Rev.	C86	(2012)

P.	Braun-Munzinger,	A.	Rustamov,	J.	Stachel
QM18,	NPA	982	(2019)	307-310	

Effects	from	conservation	laws	

o Effect	of	baryon	number	conservation	
has	to	be	taken	into	account	

o Proper	conversion	from	net-p	to	net-baryon

ALI-SIMUL-314695

SQM,	11.06.2019

4𝜋 fraction

P.	B.	Munzinger,	A.	Rustamov,	J.	Stachel
NPA	982	(2019)	307-310	
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For	a	thermal	system	in	a	fixed	volume	V	within	the	Grand	Canonical	Ensemble

Mesut	Arslandok,	Heidelberg	(PI)

  

F. Karsch, Quark Matter  2017 F. Karsch, Quark Matter  2017 18

– – agreement between HRG and QCD will start to deteriorate for T>150 MeVagreement between HRG and QCD will start to deteriorate for T>150 MeV

– – net baryon-number fluctuations in QCD always smaller than in HRG fornet baryon-number fluctuations in QCD always smaller than in HRG for
      T>150 MeVT>150 MeV
      

for simplicity:

HRG vs. QCDHRG vs. QCD
net baryon-number fluctuations  net baryon-number fluctuations  

Phys.	Rev.	D	95	(2017),	0545042nd 4th 6th

Why	net-baryon fluctuations?

Cumulants

P
T 4 =

1
VT 3 lnZ V ,T ,µB ,Q ,S( ) χ̂n

N=B ,S ,Q =
∂n P T 4

∂ µN T( )
n

Susceptibilities

χ̂4
B

χ̂2
B=κ 4 ΔNB( )

κ 2 ΔNB( )χ̂2
B =

κ 2 ΔNB( )
VT 3

Higher	orders	
P.	Braun-Munzinger,	A.	Rustamov,		J.	Stachel

Nuclear	Physics	A	960	(2017)	114–130

Ø At	4th order	LQCD	shows	a	deviation from	Hadron	Resonance	Gas	(HRG)	

SQM,	11.06.2019

A.	Bzdak,	V.	Koch,	V.	Skokov,	PRC87	(2013)	014901	
K.	Redlich	and L.	Turko,	Z.	Phys.	C5	(1980)	201	

3

Effects from conservation laws

A. Rustamov, 28.03.2019

1 − #

P. Braun-Munzinger, A. R.,  J. Stachel, NPA 982 (2019) 307-310
A. Bzdak, V. Koch, V. Skokov, PRC87 (2013) 014901
K. Redlich and L. Turko, Z. Phys. C5 (1980) 201

fluctuations of net-baryons appear only        
inside finite acceptance and impose subtle 
correlations

P.	Braun-Munzinger,	A.	Rustamov,	J.	Stachel	
NPA	982	(2019)	307-310	

13
A. Rustamov, EMMI Workshop, 25-29 March, 2019, GSI.
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by	different	mechanisms	
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A. Rustamov, EMMI Workshop, 25-29 March, 2019, GSI.
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ALICE: Phys.Rev. C88 (2013) no.4, 044909

0-5%

ALICE:	Phys.Rev.	C88	(2013)	no.4,	044909	

5.2. Event and track selection

condition

dcaxy < 0.0182 mm+
0.0350 mm

p1.01
T

, (5.1)

which takes into account the pT-dependence of the impact parameter resolution. Moreover,
tracks are required to be present in ITS and TPC refits.

Pseudo-rapidity (⌘) range |⌘| <0.8
Momentum (p) range 0.2<p<1.5 GeV/c

Centrality classes (%)
0-5, 5-10, 10-20, 20-30, 30-40

40-50, 60-70, 70-80

DCA to vertex on xy plane < 0.0182 mm+
0.0350 mm

p1.01
T

DCA to vertex along beam direction <2 cm
TPC vertex along beam direction <10 cm

�2 per cluster <4
Number of crosseed rows is a sector >80

Found/findable TPC clusters >0.5
Fraction of shared clusters <0.4

TPC and ITS refit yes
Require hits in SPD yes

Rejection of kink daughters yes

Table 5.1.: Summary of the track selection criteria.

The classification of events in centrality intervals is obtained by fitting the summed
amplitudes of the signals in the V0A and V0C detectors with a Glauber model [79]. TheCENTRALITY DETERMINATION OF Pb-Pb COLLISIONS . . . PHYSICAL REVIEW C 88, 044909 (2013)
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FIG. 9. (Color online) Purity of the three online interaction trig-
gers (2-out-of-3, V0AND, and 3-out-of-3) and other event selections
used for Pb-Pb collisions as a function of the VZERO amplitude
calculated with HIJING, STARLIGHT, and QED simulations. The
dashed line indicates 90% of the hadronic cross section.

of the VZERO amplitude (V ), is defined as the fraction of
hadronic collisions over all the events selected with a given
condition,

purity =
dNx

dV

∣∣
H

σH

NH

dNx

dV

∣∣
H

σH

NH
+ dNx

dV

∣∣
SNS

σSNS
NSNS

+ dNx

dV

∣∣
SND

σSND
NSND

+ dNx

dV

∣∣
Q

σQ

NQ

,

(4)

where σx and Nx are the cross sections and number of events
for a given process, x, where x = H , SNS, SND, and Q,
for HIJING, STARLIGHT single, STARLIGHT double, and
QED, respectively.

The purity of the event sample can be verified using the
correlation of the energy deposition in the two sides of the ZN
calorimeter, similar to the one shown in Fig. 6. Single-neutron
peaks are visible in the 80–90% centrality class, which may
indicate some remaining contamination from EMD events.
However, their origin can be also attributed to asymmetric
Pb-Pb events, as well as a pile-up of an EMD and a hadronic
collision. Since this contamination cannot be easily removed,
analyses that use peripheral classes like 80–90% assign an
additional 6% systematic uncertainty on the event selection to
take into account the possible contamination from EMD.

B. Method 2: Fitting the multiplicity distribution

Another independent way to define the AP uses a phe-
nomenological approach based on the Glauber Monte Carlo
to fit the experimental multiplicity distribution. The Glauber
Monte Carlo uses the assumptions mentioned above plus a
convolution of a model for particle production, based on a
negative binomial distribution (NBD). This latter assumption
is motivated by the fact that in minimum bias pp and pp
collisions at high energy, the charged-particle multiplicity
dσ/dNch has been measured over a wide range of rapidity
and is well described by a NBD [31,32]. This approach allows
one to simulate an experimental multiplicity distribution (e.g.,

FIG. 10. (Color online) Distribution of the sum of amplitudes in
the VZERO scintillators. The distribution is fitted with the NBD-
Glauber fit (explained in the text), shown as a line. The centrality
classes used in the analysis are indicated in the figure. The inset
shows a zoom of the most peripheral region.

VZERO amplitude), which can be compared with the one from
data.

Figure 10 shows the distribution of VZERO amplitudes for
all events triggered with the 3-out-of-3 trigger (see Sec. III B)
after removing the beam background (see Sec. III C1), part of
the EM background with the ZDC cut (see Sec. III C2), and
a Z-vertex cut |zvtx| < 10 cm. The multiplicity distribution
has the classical shape of a peak corresponding to most
peripheral collisions (contaminated by EM background and
by missing events due to the trigger inefficiency), a plateau of
the intermediate region, and an edge for the central collisions,
which is sensitive to the intrinsic fluctuations of Npart and
dNch/dη and to detector acceptance and resolution.

The Glauber Monte Carlo defines, for an event with a
given impact parameter b, the corresponding Npart and Ncoll.
The particle multiplicity per nucleon-nucleon collision is
parametrized by a NBD. To apply this model to any collision
with a given Npart and Ncoll value we introduce the concept of
“ancestors,” i.e., independently emitting sources of particles.
We assume that the number of ancestors Nancestors can be
parameterized by Nancestors = f Npart + (1 − f )Ncoll. This is
inspired by two-component models [33,34], which decompose
nucleus-nucleus collisions into soft and hard interactions,
where the soft interactions produce particles with an average
multiplicity proportional to Npart, and the probability for hard
interactions to occur is proportional to Ncoll. We discuss
the independence of the fit results of this assumption below
(Sec. IV B1).

To generate the number of particles produced per interac-
tion, we use the negative binomial distribution

Pµ,k(n) = #(n + k)

#(n + 1)#(k)

(µ/k)n

(µ/k + 1)n+k
, (5)

which gives the probability of measuring n hits per ancestor,
where µ is the mean multiplicity per ancestor and k controls
the width. For every Glauber Monte Carlo event, the NBD
is sampled Nancestors times to obtain the averaged simulated
VZERO amplitude for this event, which is proportional to
the number of particles hitting the hodoscopes. The VZERO

044909-9

Figure 5.3.: (Black markers) Distribution of the summed amplitudes in the V0 detectors. (Red curve) the
result of the Glauber model fit to the measurement. The vertical lines separate the centrality
classes, which in total correspond to the most central 80% of the hadronic collisions [79].

model assumes that the number of particle-producing sources is given by f ⇥ Npart +
(1� f)⇥Ncoll, where Npart is the number of participating nucleons, Ncoll is the number of
binary nucleon-nucleon collisions and f quantifies their relative contributions. The number
of particles produced per interaction is generated using a Negative Binomial Distribution
(NBD) Pµ,k, which is parametrized by µ and k, where µ is the mean multiplicity per

89

6. Event-by-event Identified Particle Ratio Fluctuations

Alternatively, within the grand canonical ensemble one can define quantities which are
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Figure 1: Left Panel: Produced number of charged particles versus the impact parame-
ter. Right Panel: Produced number of charged particles versus the number of wounded
nucleons. For a given value of the impact parameter the number of wounded nucleons
and binary collisions are calculated with a Glauber Monte Carlo simulation based on the
approach described in [14]. Next, using a two-component model, charged particles are
produced assuming a Negative Binomial Distribution with parameters extracted by the
same procedure as used in the ALICE experiment.

Distribution (NBD), defined by the probability distribution

Pµ,k(n) =
�(n+ k)

�(n+ 1)�(k)

⇣µ
k

⌘n ⇣µ
k
+ 1

⌘�(n+k)

, (26)

where µ is the mean multiplicity of particles emitted from each ancestor
and k controls the width of the NBD. Numerical values of the parameters,
µ = 29.3 and k = 1.6, are taken from the ALICE paper [14].

Two-dimensional scatter plots representing the dependence on b and NW

of the produced number of charged particles are presented in the left and
the right panel of Fig. 1, respectively. The centrality classes, selected by
applying sharp cuts on the number of produced charged particles (y axis),
are represented by the dashed horizontal lines. As seen from the scatter
plots in the Fig. 1, where each dot represents one single event, the impact
parameter as well as the number of wounded nucleons fluctuate from event-
to-event, thus generating a distribution. To demonstrate this explicitly we

10

Figure 6.3.: Left Panel: Produced number of charged particles versus the impact parameter. Right
Panel: Produced number of charged particles versus the number of wounded nucleons, i.e.
number of participants. For a given value of the impact parameter the number of wounded
nucleons and binary collisions are calculated with a Glauber Monte Carlo simulation. The
corresponding centrality classes are indicated by the dashed horizontal lines [20].

free from the volume fluctuations, for instance ⌫dyn. In the model of independent sources
[86], extensive quantities1 such as the mean number of particles are considered to be pro-
portional to the number of sources, hNsi, where hNsi changes from event to event. The
multiplicities for particle types a and b can be expressed as

Na = ↵1 + ↵2 + ...+ ↵Ns
, Nb = �1 + �1 + ...+ �Ns

, (6.1)

where ↵k and �k denote the contributions from the kth source. One finds the first and
second moments of the multiplicity distributions as follows:

hNai = h↵ihNsi, (6.2)

hNbi = h�ihNsi, (6.3)

hN2

a i = h↵2ihNsi+ h↵i2
⇥
hN2

s i � hNsi
⇤
, (6.4)

hN2

b i = h�2ihNsi+ h�i2
⇥
hN2

s i � hNsi
⇤
, (6.5)

hNaNbi = h↵�ihNsi+ h↵ih�i
⇥
hN2

s i � hNsi
⇤
, (6.6)

where h↵i, h�i and h↵2i, h�2i, h↵�i are the first and second moments of the probability
distributions P (↵,�) for a single source. These quantities are independent of hNsi and
play the role of intensive quantities. The details of the derivation of Eq. 6.2 – Eq. 6.6 can
be found in [87]. Here, P (↵,�) is assumed to be the same for all sources; that is, they are
statistically identical.

1Intensive quantities are physical quantities which are independent of the system volume, while exten-
sive quantities are proportional to the system volume. Accordingly, one can easily construct an intensive
quantity by taking the ratio of two extensive ones. For instance, within the grand canonical ensemble the
mean number of particles, hNi, in a relativistic gas and the variance, hN2i�hNi2 are extensive quantities,
thus the scaled variance, (hN2i � hNi2)/hNi, is an intensive one.
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Figure 9: Left panel: Fourth cumulants of net-protons for Au+Au Collisions at
p
sNN =

7.7 GeV. Right panel: Ratio of fourth and second cumulants. Red points correspond to
fixed number of wounded nucleons while, for the black points, the fluctuations of wounded
nucleons are included. The centrality bin width is 2.5% for the blue points, while for the
black points variable bin widths (see Fig. 1) are used. The lines (black and blue) are
calculated using eqs. 22 and 24.

the centrality determination are not removed entirely. We note, in this con-
text, that a significant contribution to net-proton fluctuations will originate
from fluctuations of the number of net � baryons. This will introduce strong
pion-proton correlations into the sample implying that a part of the auto-
correlation problem survives, even if one excludes protons and antiprotons
from the data used for centrality determination.

Like in case of protons at
p
sNN = 2.76 TeV (see the left panel of Fig. 6),

we observe small e↵ects of the participant fluctuations for the most cen-
tral bin in Fig. 9. As explained above, this stems from the negative values of
3(NW ) and 4(NW ). However, this also depends on the mean number of par-
ticles or net-particles. To show this explicitly we present, in Figs. 10 and 11,
cumulants of net-protons for Au+Au collisions at

p
sNN=39 GeV. Mean val-

ues of protons and antiprotons are taken from [20]. For the second cumulants
of net-protons we observe quite small contributions from participant fluctu-
ations. However, for the third and fourth cumulants these contributions are
significant. Moreover, even for the most central bin 4(p � p̄)/2(p � p̄)
deviates from unity if participant fluctuations are included.

18

Ø Subdividing	a	given	centrality	bin	into	smaller	ones	and	then	merging	them	
together	incoherently.	

Ø Incoherent	addition	of	data	from	intervals	with	very	small	centrality	bin	width	
will	eliminate	true	dynamical	fluctuations.	

P.	Braun-Munzinger,	A.	Rustamov,		J.	Stachel,	
Nuclear	Physics	A	960	(2017)	114–130

Better	publish	uncorrected	results
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Figure 3: (Color online) Upper panel: Results for the second moments of pions as computed

with the PSET method (open boxes) and the Identity method (solid lines). The value of the

correlation coe�cient is taken to be R = 0.1 (cf. left panel of Fig. 2). The analytical calculation

is represented with the dashed line. Bottom panel: The ratios of the second moments of pions

as computed with the PSET method to the theoretical baseline (open boxes). Similar ratios

for the Identity method are presented with the solid lines.

method. Although the method is general and functions for unlimited number135

of particle species, for simplicity we consider the case of two particle types only.

The simulation process consists of the following steps: (i) from independent

Poisson distributions, with a given means of �⇡ = 6 and �K = 4, we first

randomly generate multiplicities of pions and kaons in each event; (ii) using

the ⇢⇡ and ⇢K distributions functions, presented in the left panel of Fig. 1 we140

generate the values of the particle identification variable x corresponding to each

particle species. In order to introduce correlations between pairs of x quantities,

we use the probability density function of the bi-variate normal distribution

f(x1, x2) =
1

2⇡
p

|⌃|
e�0.5(x�hxi)T⌃�1(x�hxi), (21)

where |⌃| is the determinant of ⌃. The column vectors x, hxi and the covariance
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Figure 4: (Color online) Upper panel: Results for the second moments of pions as computed

with the PSET method (open boxes) and the Identity method (solid lines). The value of

the correlation coe�cient is taken to be R = 0.5 (cf. right panel of Fig. 2). The analytical

calculation is represented with the dashed line. Bottom panel: The ratios of the second

moments of pions as computed with the PSET method to the theoretical baseline (open

boxes). Similar ratios for the Identity method are presented with the solid lines.

matrix ⌃ are defined as145

x =

0

@x1

x2

1

A , hxi =

0

@hx1i

hx2i

1

A ,⌃ =

0

@ �2
x1

R�x1�x2

R�x1�x2 �2
x2

1

A . (22)

The dimensionless parameter R, referred to as the correlation coe�cient, is

introduced as

R =
h(x1 � hx1i)(x2 � hx2i)i

�x1�x2

. (23)

We further note that the correlations between x1 and x2 are introduced only if

they belong to the same particle, otherwise they are generated independently,

i.e., the value of the correlation coe�cient R is set to zero in this case. Each150

generated ith event contains a set of quantities X = {x1, x2, ..., xNi}, where Ni
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Figure 4: (Color online) Upper panel: Results for the second moments of pions as computed

with the PSET method (open boxes) and the Identity method (solid lines). The value of

the correlation coe�cient is taken to be R = 0.5 (cf. right panel of Fig. 2). The analytical

calculation is represented with the dashed line. Bottom panel: The ratios of the second

moments of pions as computed with the PSET method to the theoretical baseline (open

boxes). Similar ratios for the Identity method are presented with the solid lines.
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The dimensionless parameter R, referred to as the correlation coe�cient, is

introduced as

R =
h(x1 � hx1i)(x2 � hx2i)i

�x1�x2

. (23)

We further note that the correlations between x1 and x2 are introduced only if

they belong to the same particle, otherwise they are generated independently,

i.e., the value of the correlation coe�cient R is set to zero in this case. Each150

generated ith event contains a set of quantities X = {x1, x2, ..., xNi}, where Ni

12

Probability	density	function	of	the	bi-variate	normal	distribution	

Correlations	between	x1 and	x2 are	introduced	only	if	they	belong	to	the	same	particle,	
otherwise	they	are	generated	independently,	i.e.,	R	is	set	to	0	in	this	case	
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In a similar way hN2
Ki and hN⇡ ·NKi are calculated. Thus the problem of mea-

suring second moments of joint multiplicity distributions of identified particles110

is reduced to finding the mean multiplicities of identified particle pairs.

The experimental data on particle pairs in M events is defined as follows.

Number of particle pairs in an event i of multiplicity Ni is

N (2)
i =

1

2
Ni(Ni � 1) . (10)

The total number of pairs in all M events is

N (2) =
MX

i=1

N (2)
i , (11)

and the mean multiplicity of all possible pairs can be calculated as

hN (2)i = N (2)

M
. (12)

The full set of the pair data consists of N (2) pairs:

X (2) = {(x1, x2)1, (x1, x2)2, . . . , (x1, x2)N (2)} . (13)

The two-particle mass distribution function ⇢(x1, x2) is a weighted sum of

two-dimensional pdfs of identified pairs:

⇢(x1, x2) ⌘ ⇢⇡⇡(x1, x2) + ⇢KK(x1, x2) + ⇢⇡K(x1, x2) + ⇢K⇡(x1, x2)

⌘ hN⇡⇡i · f⇡⇡(x1, x2) + hNKKi · fKK(x1, x2) + hN⇡Ki · f⇡K(x1, x2) + hNK⇡i · fK⇡(x1, x2)

⌘ hN (2)i
�
r⇡⇡ · f⇡⇡(x1, x2) + rKK · fKK(x1, x2) + r⇡K · f⇡K(x1, x2) + r⇡K · fK⇡(x1, x2)

�
,

(14)

with r⇡⇡ + rKK + 2 · r⇡K = 1 . Consequently, only two parameters should

be estimated from the experimental measurements X (2). The two-dimensional

probability density function for the system of pions and kaons reads:

F (x1, x2|r⇡⇡, rKK) = r⇡⇡ · f⇡⇡(x1, x2) + rKK · fKK(x1, x2) + r⇡K · f⇡K(x1, x2) + r⇡K · fK⇡(x1, x2)

(15)

and using the MLM the auxiliary likelihood function:

l(X (2) | r⇡⇡, rKK) = �
N (2)X

j=1

ln
�
F ((x1, x2)j | r⇡⇡, rKK)

�
. (16)
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function (LF):

L(X | rK) =
NY

j=1

F (xj | rK) (6)

as a joint conditional probability of the measurements X at the fixed value of the

parameter rK . Now, in the LF we treat the measurements X as fixed values and

the parameter rK as a variable. According to the maximum likelihood principle

we should choose a value of rK = r⇤K which maximizes L(X | rK). It is usually

more convenient to minimize the auxiliary function, l(X | rK), defined as :

l(X | rK) ⌘ � ln
�
L(X | rK)

�
= �

NX

j=1

ln
�
F (xj | rK)

�
. (7)

The search for the value of r⇤K , which minimizes l(X|rK), has to be done using

standard numerical minimization procedures [15].

To estimate the statistical uncertainty of r⇤K one should use the sub-sample [16]

and/or bootstrap methods [17] at the level of events as independent data units.

It is important to stress that both methods take into account correlations be-105

tween measurements of the ”mass” variable for di↵erent particles. The goodness-

of-fit tests are discussed in detail in Ref. [13].

2.2. Mean multiplicity of particle pairs

In this subsection the PSET Identification method is considered for particle

pairs. Let us start with the observation that the mean multiplicity of pairs

of particles of a given type is directly related to the second moment of its

multiplicity distribution. For example, the mean multiplicity of pion-pion pairs,

hN⇡⇡i, is given as:

hN⇡⇡i =
1

2

⌦
N⇡ (N⇡ � 1)

↵
=

hN2
⇡i � hN⇡i

2
. (8)

When mean multiplicities of pions, hN⇡i, and pion-pion pairs, hN⇡⇡i, are known,

the second moment of the pion multiplicity distribution can be calculated as

hN2
⇡i = 2 · hN⇡⇡i+ hN⇡i . (9)
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FIG. 2. Cumulants of the response matrix Cm(N) for
RHG(n;N) and R�(n;N) obtained on 108 sample events with
p = 0.7 and Y = 140. The dashed lines show the analytic val-
ues, while the dotted lines represent the fitting results with
mth-order polynomial.

Cm(N) defined by

C1(N) = R1(N), C2(N) = R2(N)� (R1(N))2, (20)

and so forth, for RHG(n;N) and R�(n;N) obtained on305

108 sample events with p = 0.7 and Y = 140 for m 306

4. The dashed lines show the analytic values, while the307

dotted lines are the fitting results with the mth-order308

polynomial. From these fits one obtains the values of309

rmj .310

In Fig. 3, we show the corrected values of the cumu-311

lants hNmic for m  4 with p = 0.7 and various values of312

Y . The left (right) panel shows the results for RHG(n;N)313

(R�(n;N)). The triangles represent the results obtained314

with the analytic values of rmj , while the results obtained315

with rmj determined by the fits to Rm(N) are shown by316

squares. 107 sample events are used to obtain hhnmii in317

both analyses, while rmj in the latter analysis are ob-318

tained with 108 sample events. Errors are estimated by319

repeating the same simulation 100 times. One finds from320

the figure that the corrected cumulants hNmic are con-321

sistent with the true value, hNmic = 40 shown by the322

dashed line, within statistics for all values of Y in both323

analyses. In Fig. 3, the uncorrected cumulants, hhnmii
c
,324

are shown by filled circles. We also show the results of325

the e�ciency correction with the binomial model with326

p = 0.7 by the stars. The results in the binomial model327

fail in reproducing the true cumulants [27], in contrast to328

the new method.329

From Fig. 3 one also finds that the statistical error330

is large when rmj are determined by the fits, although331

the statistics to determine rmj is one order larger than332

that for hhnmii. This suggests that the suppression of the333

uncertainty of rmj is crucial in reducing the error of the334

final results.335

FIG. 3. Cumulants obtained by the detector-response correc-
tion, hNmi, up to the fourth order with p = 0.7 as functions
of Y for RHG(n;N) (left) and R�(n;N) (right). The results
obtained with the analytic (fitted) values of rmj are shown
by triangles (squares). The corrected values agree with the
true cumulants hNmic = 40 shown by the dashed line within
statistics. The uncorrected cumulants hhnmii

c
and the cor-

rected results in the binomial model are also shown by circles
and stars, respectively.

Finally, we note that the fitting results of Cm(N) in336

Fig. 2 have significant deviations from the analytic val-337

ues for N & 60. Nevertheless, the final results obtained338

with these fits reproduce the true values within statistics.339

This result shows that the detector-response correction is340

carried out appropriately even if the fits do not reproduce341

Rm(N) in the range of N at which P (N) is small.342

V. TEST ANALYSIS 2:343

MULTIPLICITY-DEPENDENT EFFICIENCY344

Next, we perform a test analysis of the detector-
response correction for the response matrix which cannot
be solved exactly. As such an example, we consider the
response of a detector having a multiplicity-dependent ef-
ficiency. We consider the binomial distribution but the
e�ciency is dependent on N , i.e.

RMD(n;N) = B(n; p(N), N). (21)

4

of the Monte Carlo events, Nevent. The validity of the fits212

would be checked by setting Nevent to the same value as213

the statistics of the experimental data. When the value214

of chi-square, �2
/ndf, of these fits are close to unity with215

this statistics, there are no reasons to reject the use of216

Eq. (17). Next, the fitting results of rmj can also de-217

pend on the form of PMC(N). This suggests that one218

must check the sensitivity of the fit results on the form219

of PMC(N), or perform an iterative procedure as follows:220

1. Generate R(n;N) by a Monte-Carlo simulation221

with a presumed distribution PMC(N).222

2. Perform fits to Rm(N) with Eq. (16). One then223

obtains rmj for m, j  L. Together with the exper-224

imental results on hhnmii, one obtains the corrected225

moments hNmi.226

3. If hNmi thus obtained have large deviations from227

the moments of PMC(N), replace PMC(N) with the228

one consistent with hNmi obtained in the above229

step, and take the analysis from the top again.230

4. Repeat this iteration until PMC(N) is consistent231

with hNmi obtained by the correction.232

It, however, is expected that the result of the fits are in-233

sensitive to PMC(N), especially on the cumulants higher234

than the second order. The use of the Gaussian distri-235

bution with the mean and variance obtained by the cor-236

rection for PMC(N) would be su�cient for this analysis.237

It is also expected that a few iterations are enough for238

convergence.239

Finally, we comment on the error analysis. First, in240

the detector-response correction with Eq. (17), it is im-241

portant to reflect the correlation between the errors of242

rmj to the final result appropriately. An automatic way243

to include the correlation is the use of the bootstrap or244

jackknife analysis with the successive generation of Monte245

Carlo events. Second, in the present method it is possible246

to reduce the errors of rmj by increasing Nevent indepen-247

dently of the statistics of hhnmii. In fact, in the next248

section we will see that the suppression of the error of249

rmj is e↵ective in reducing the error of the final result.250

With increasing Nevent, however, the �2
/ndf of the fits to251

Rm(N) with Eq. (16) will eventually become unaccept-252

ably large. In this case, the analysis with the truncation253

loses its validity. In this sense, this analysis has an upper254

limit of the resolution. Third, the e↵ect of the truncation255

can be estimated by comparing the corrected results at256

the L and (L+ 1)th orders. Such analyses would require257

large statistics, but are desirable for a proper estimate on258

the systematic uncertainty of the analysis.259

IV. TEST ANALYSIS 1: EXACT MODELS260

In this and next sections, we perform test analyses for261

the detector-response correction discussed in Sec. II with262

toy models for R(n;N), and show that the corrections263

are carried out successfully in these cases.264

In this section, we first perform test analyses for the
response matrices which can be solved exactly discussed
in Sec. IID. We consider two non-binomial models for

FIG. 1. Correlation between n and N on the sample events,
i.e. the magnitude of R(n;N)P (N), for the response matrices
RHG(n;N) (hypergeometric) and R�(n;N) (beta-binomial)
with p = X/Y = 0.7 and Y = 140.

R(n;N) parametrized by the hypergeometric and beta-
binomial distributions as

RHG(n;N) = H(n;N,X, Y ), (18)

R�(n;N) = �(n;N,X, Y �X), (19)

where the hypergeometric and beta-binomial distribu-265

tions, H(n;N,X, Y ) and �(n;N, a, b), are defined in Ap-266

pendix D. The response matrices parametrized by these267

distributions are studied in Ref. [27] as examples that268

the binomial model fails in obtaining the true cumulants,269

and are good starting points for the check of the new270

method. Equations (18) and (19) approach the binomial271

model Rbin(n;N) = B(n; p,N) in the Y ! 1 limit with272

fixed p = X/Y , while the distribution of n in RHG(n;N)273

(R�(n;N)) is narrower (wider) than the binomial dis-274

tribution with finite Y . As discussed in Appendix D,275

the values of rmj in Eq. (6) are obtained analytically for276

RHG(n;N) and R�(n;N).277

The procedure of the test analysis is as follows. We278

first generate sample events ofN by assuming the Poisson279

distribution for P (N) with hNi = 40. We then specify280

the value of n for each sample event randomly accord-281

ing to the probability RHG(n;N) or R�(n;N). This al-282

lows one to obtain the moments hhnmii. These moments283

are used for the correction in Eq. (9). To proceed the284

correction, we take the following two di↵erent analyses.285

First, because the values of rmj are analytically known286

for RHG(n;N) and R�(n;N), we perform the correction287

with these values. Besides this analysis, as a second op-288

tion, we analyze hNmi with the values of rmj determined289

by the fits to Rm(N) obtained on the sample events with290

statistical errors. The second analysis supposes the cor-291

rection of realistic detectors, of which the response matrix292

is obtained only stochastically.293

In Fig. 1, we show the correlation between n and N on294

the 108 sample events by plotting the two-dimensional295

histogram as a function of n and N for the hypergeo-296

metric (RHG(n;N)) and beta-binomial (R�(n;N)) dis-297

tributions with p = 0.7 and Y = 140. (This plot thus298

represents the magnitude of R(n;N)P (N), and is usu-299

ally called the “response matrix” in literature for sim-300

plicity.) One finds from the figure that the distributions301

are clearly di↵erent between the two response matrices;302

the width of n with fixed N is narrower for RHG(n;N)303

than R�(n;N).304

In Fig. 2, we show the cumulants of the response matrix
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