High Moments of Particle Distributions from Heavy-Ion Collisions at LHC

Mesut Arslandok

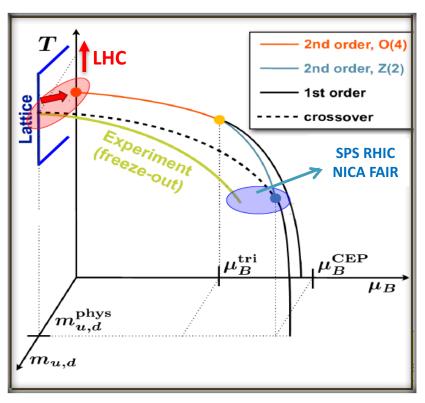
(Yale University, CERN)

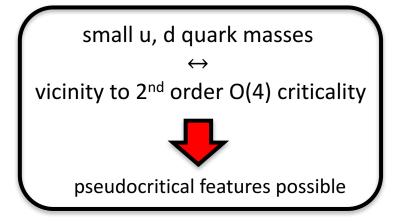
- Why fluctuations?
- Results: Conserved charge fluctuations Experimental challenges
- Future plans

RHIC Beam Energy Scan and Beyond - Online Workshop

Lawrence Berkeley National Laboratory, California, August 16, 2021

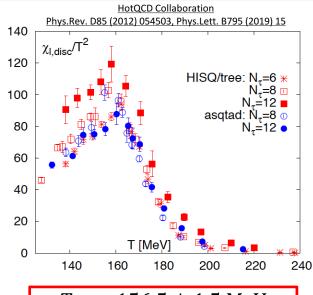
Why fluctuations?: Nature of chiral phase transition





F. Karsch, Schleching 2016

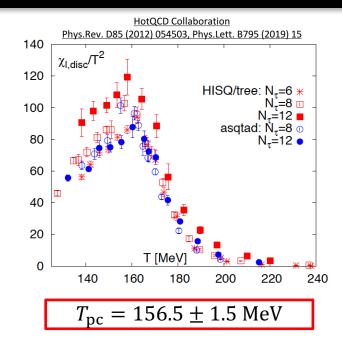
Criticality at Crossover



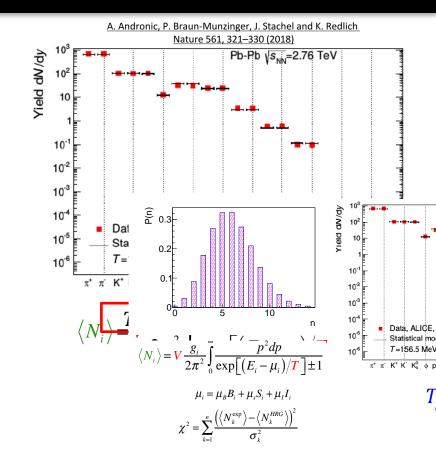
$$T_{\rm pc} = 156.5 \pm 1.5 \, {\rm MeV}$$

$$\langle \bar{\psi}\psi \rangle_l^{n_f=2} = \frac{T}{V} \frac{\partial \ln Z}{\partial m_l}$$
$$\chi_{m,l} = \frac{\partial}{\partial m_l} \langle \bar{\psi}\psi \rangle_l^{n_f=2}$$

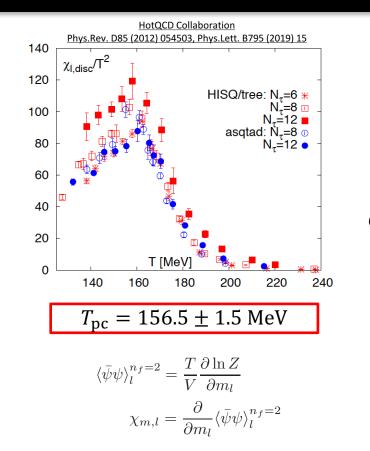
Criticality at Crossover

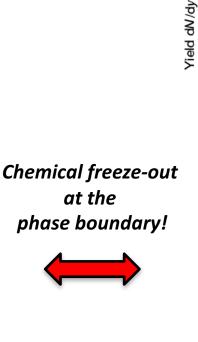


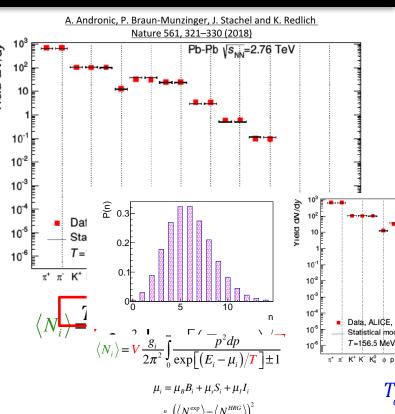
$$\langle \bar{\psi}\psi \rangle_l^{n_f=2} = \frac{T}{V} \frac{\partial \ln Z}{\partial m_l}$$
$$\chi_{m,l} = \frac{\partial}{\partial m_l} \langle \bar{\psi}\psi \rangle_l^{n_f=2}$$



Criticality at Crossover





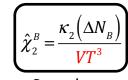


Chemical freeze-out near $T_{pc} \rightarrow$ motivation to look for higher order moments

Link to LQCD: Fluctuations of conserved charges

For a thermal system within the **Grand Canonical Ensemble**

$$\frac{P}{T^4} = \frac{1}{VT^3} \ln Z(V, T, \mu_{B,Q,S}) \Rightarrow \hat{\chi}_n^{N=B,S,Q} = \frac{\partial^n P/T^4}{\partial (\mu_N/T)^n}$$



Susceptibilities

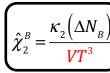
Cumulants

Link to LQCD: Fluctuations of conserved charges

For a thermal system within the **Grand Canonical Ensemble**

$$\frac{P}{T^4} = \frac{1}{VT^3} \ln Z(V, T, \mu_{B,Q,S}) \implies \hat{\chi}_n^{N=B,S,Q} = \frac{\partial^n P/T^4}{\partial (\mu_N/T)^n}$$

Susceptibilities



$$\frac{\kappa_{_{4}}(\Delta N_{_{B}})}{\kappa_{_{2}}(\Delta N_{_{B}})} = \frac{\hat{\chi}_{_{4}}^{^{B}}}{\hat{\chi}_{_{2}}^{^{B}}}$$

Cumulants

Higher orders

P. Braun-Munzinger, A. Rustamov, J. Stachel, Nucl. Phys. A960 (2017) 114

Link to LQCD Fluctuations of conserved charges

For a thermal system within the **Grand Canonical Ensemble**

$$\frac{P}{T^4} = \frac{1}{VT^3} \ln Z(V, T, \mu_{B,Q,S}) \Rightarrow \hat{\chi}_n^{N=B,S,Q} = \frac{\partial^n P/T^4}{\partial (\mu_N/T)^n}$$

Susceptibilities

$$\left(\hat{\chi}_{2}^{B} = \frac{\kappa_{2}(\Delta)}{VT}\right)$$

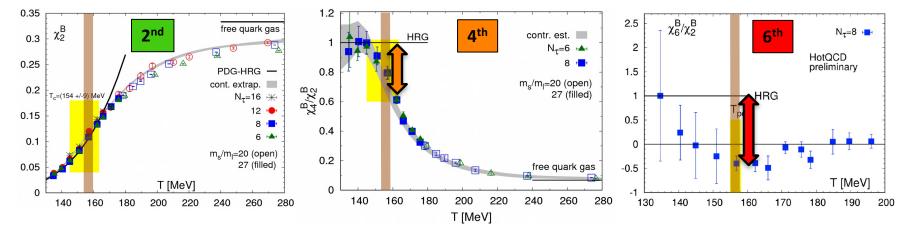
$$\frac{\kappa_{_{4}}(\Delta N_{_{B}})}{\kappa_{_{2}}(\Delta N_{_{B}})} = \frac{\hat{\chi}_{_{4}}^{_{B}}}{\hat{\chi}_{_{2}}^{_{B}}}$$

Cumulants

Higher orders

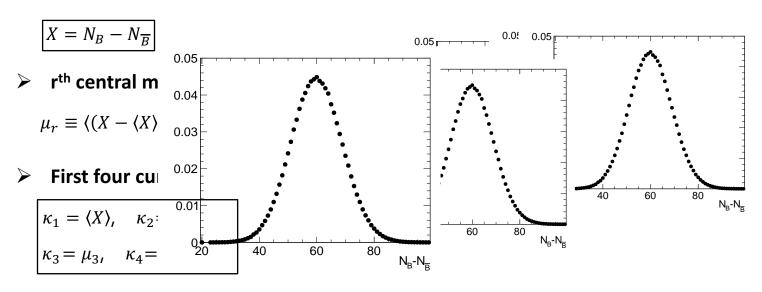
Phys. Rev. D 95 (2017), 054504, Phys. Rev. D 96, 074510 (2017)

P. Braun-Munzinger, A. Rustamov, J. Stachel, Nucl. Phys. A960 (2017) 114



- Up to 3rd order LQCD agrees with Hadron Resonance Gas (HRG)
- At 4th order (~30%) and 6th order (~150%) deviation from HRG

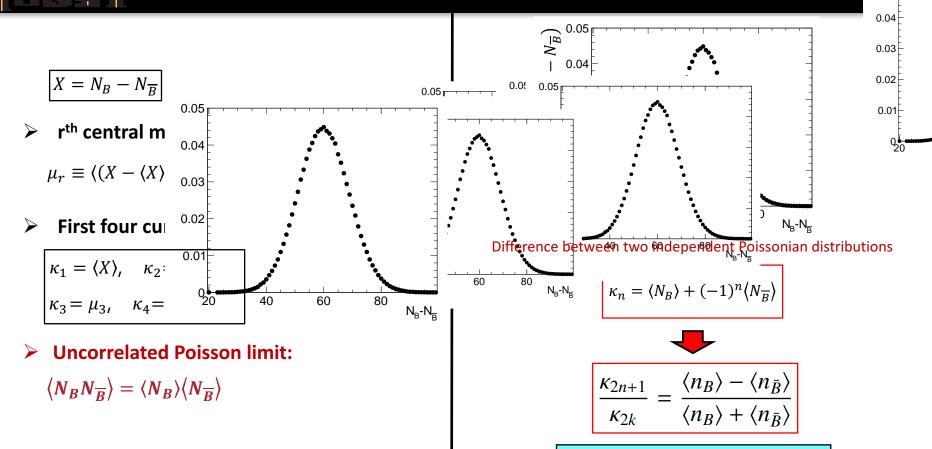
Baseline: Skellam distribution



Uncorrelated Poisson limit:

$$\langle N_B N_{\overline{B}} \rangle = \langle N_B \rangle \langle N_{\overline{B}} \rangle$$

Baseline: Skellam distribution

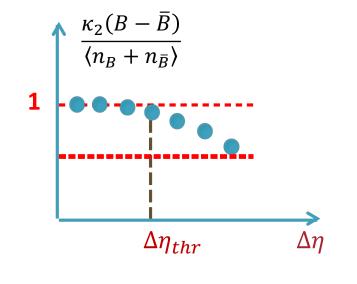


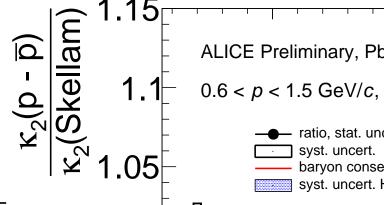
Odd cumulants vanish for $\langle N_B \rangle = \langle N_{\bar{B}} \rangle$

0.05

Importance of acceptance and baryon number conservation

- Fluctuations of conserved charges appear
 only inside finite acceptance
- In the limit of very small acceptance
 - → only Poissonian fluctuations

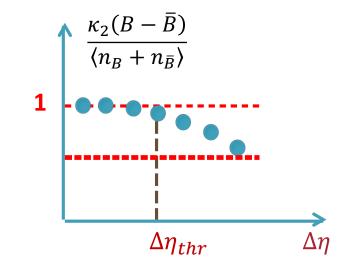


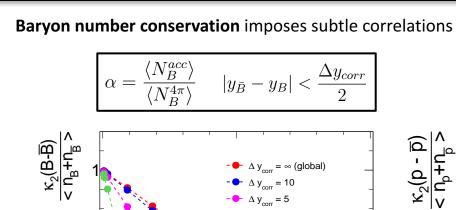


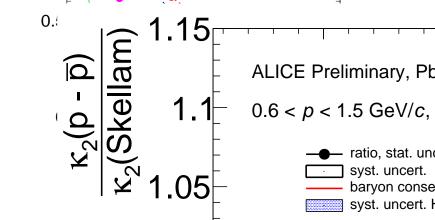
RHIC BES and Beyond, 16.08.2021 Mesut Arslandok, Yale University

Importance of acceptance and baryon number conservation

- Fluctuations of conserved charges appear only inside finite acceptance
- In the limit of very small acceptance
 → only Poissonian fluctuations





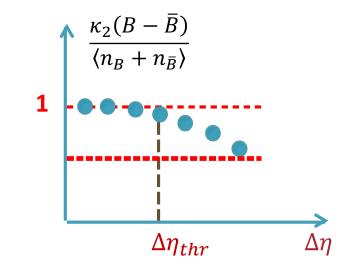


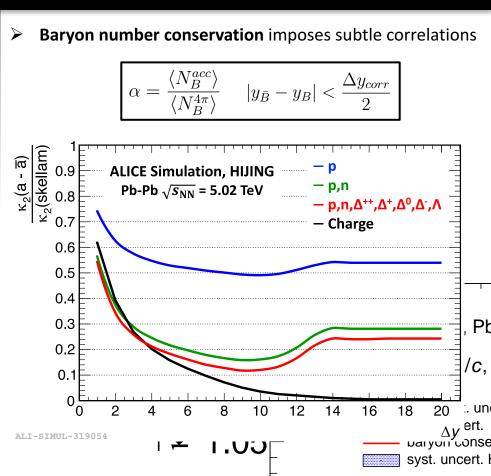
 $\Delta y_{corr} = 2.5$

RHIC BES and Beyond, 16.08.2021 Mesut Arslandok, Yale University

Importance of acceptance and baryon number conservation

- Fluctuations of conserved charges appear only inside finite acceptance
- In the limit of very small acceptance → only Poissonian fluctuations





Pk

/c,

:. un

Results

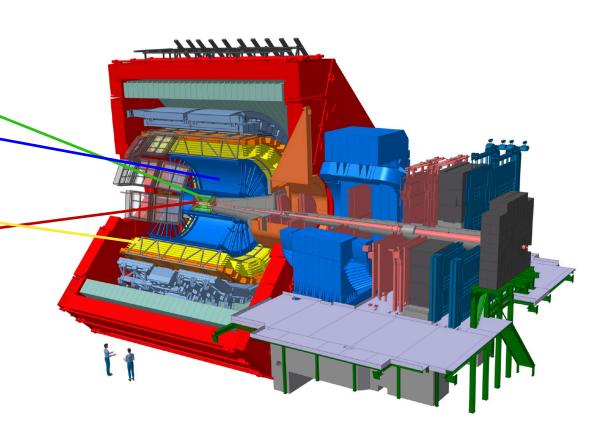
A Large Ion Collider Experiment

Main detectors used:

- Inner Tracking System (ITS)
 - → Tracking and vertexing
- ➤ Time Projection Chamber (TPC) <
 - → Tracking and Particle Identification (PID)
- Time Of Flight (TOF)
 - → Tracking and PID
- Vertex 0 (V0)
 ←
 - → Centrality determination

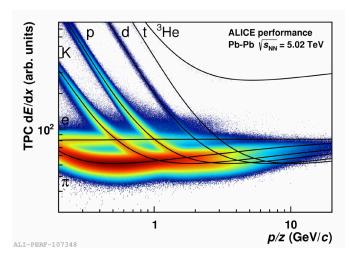
Data Set:

- $ightharpoonup \sqrt{s_{\rm NN}} = 5.02$ TeV, ~150 M events
- \sim $\sqrt{s_{\rm NN}} = 2.76$ TeV, \sim 12 M events



Methods

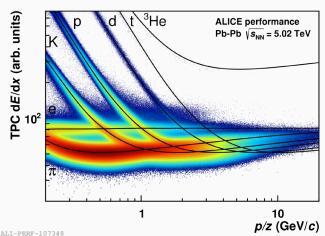
- Cut-based approach:
 - Count tracks of a given particle type
- > Identity method:
 - <u>Count probabilities</u> to be of a given particle type
 - Gives folded multiplicity distribution
 - Allows for larger efficiencies
 - → smaller correction needed

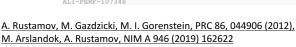


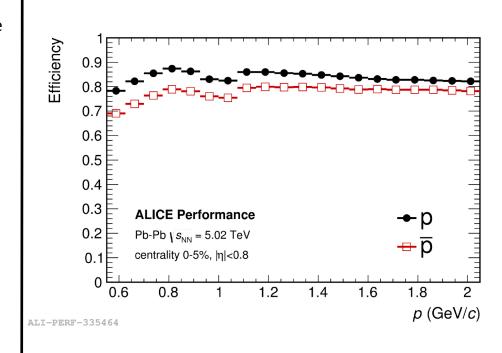
A. Rustamov, M. Gazdzicki, M. I. Gorenstein, PRC 86, 044906 (2012), M. Arslandok, A. Rustamov, NIM A 946 (2019) 162622

Methods

- Cut-based approach:
 - <u>Count tracks</u> of a given particle type
- Identity method:
 - Count probabilities to be of a given particle type
 - Gives folded multiplicity distribution
 - Allows for larger efficiencies
 - → smaller correction needed

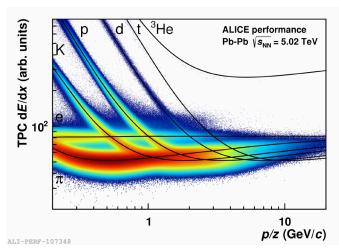


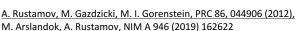


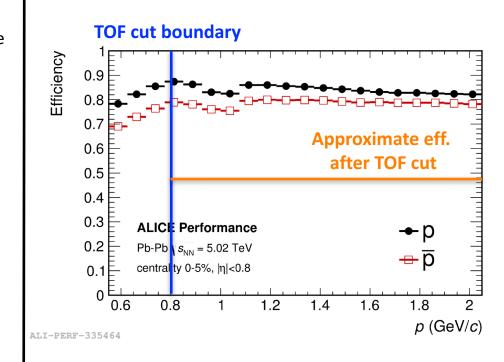


Methods

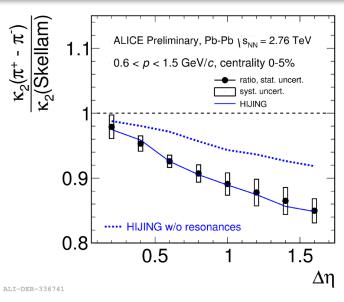
- Cut-based approach:
 - Count tracks of a given particle type
- Identity method:
 - <u>Count probabilities</u> to be of a given particle type
 - Gives folded multiplicity distribution
 - Allows for larger efficiencies
 - → smaller correction needed





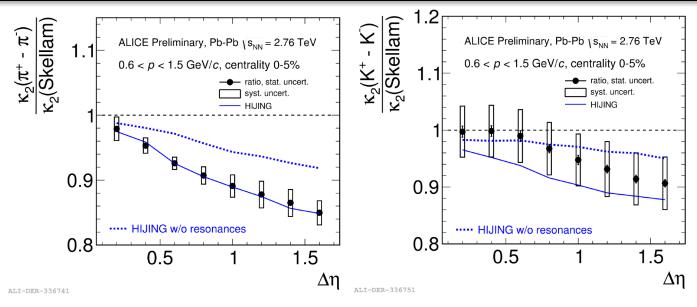


Net-(global)charge fluctuations



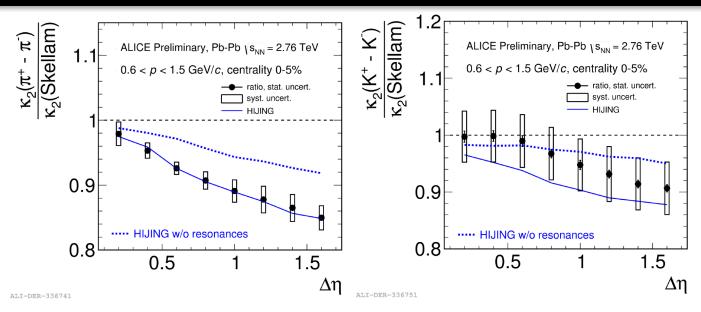
➤ Net-electric-charge: → Strongly dominated by resonance contributions

Net-(global)charge fluctuations



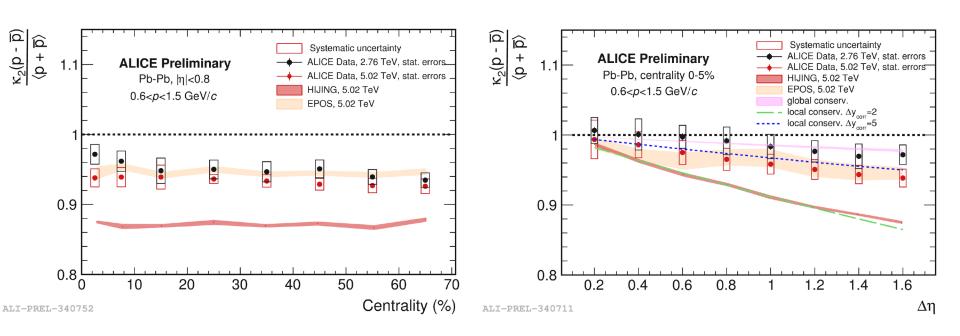
- Net-electric-charge: → Strongly dominated by resonance contributions
- Net-strangeness: → Kaons are dominated by φ-decay

Net-(global)charge fluctuations



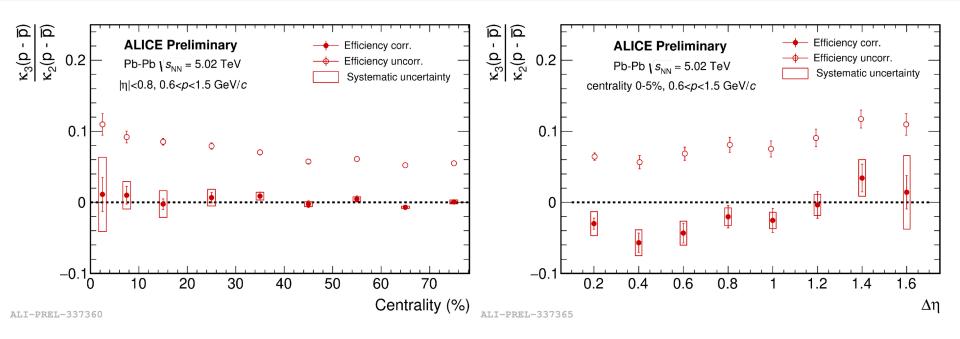
- Net-electric-charge: → Strongly dominated by resonance contributions
- Net-strangeness: → Kaons are dominated by φ-decay
- > Net-baryon:
 - \rightarrow Due to **isospin randomization,** at $\sqrt{s_{\mathrm{NN}}}$ > 10 GeV **net-baryon** fluctuations can be obtained from corresponding **net-proton** measurements (M. Kitazawa, and M. Asakawa, Phys. Rev. C 86, 024904 (2012))
 - \rightarrow No resonance feeding p + \bar{p}
 - → Best candidate for measuring charge susceptibilities

2nd order cumulants of net-p



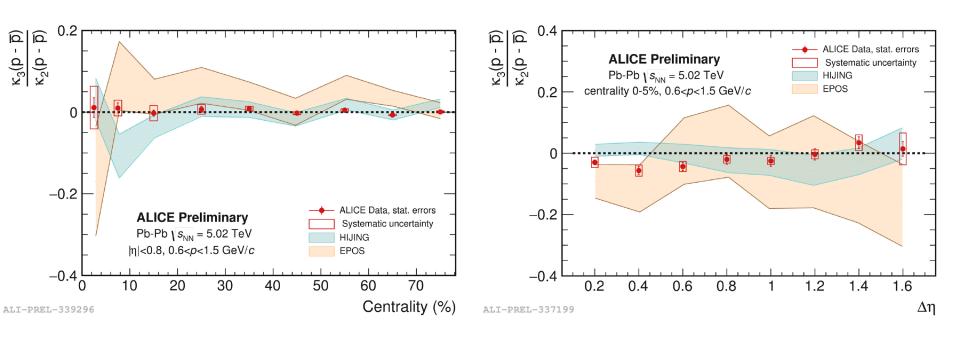
- Deviation from Skellam baseline is due to baryon number conservation
- ALICE data suggest long range correlations, $\Delta y = \pm 2.5$ unit or longer
- EPOS agrees with ALICE data but HIJING deviates significantly
 - Event generators based on <u>string fragmentation</u> (HIJING) conserve baryon number over $\Delta y = \pm 1$ unit

3rd order cumulants of net-p



- > Data agree with Skellam baseline "0" as a function of centrality and pseudorapidity
- > Achieved precision of better than 5%

3rd order cumulants of net-p



- > Data agree with Skellam baseline "0" as a function of centrality and pseudorapidity
- Achieved precision of better than 5%
- EPOS and HIJING in agreement with data
 - Both models conserve global charge \rightarrow net-p within acceptance is ~ 0

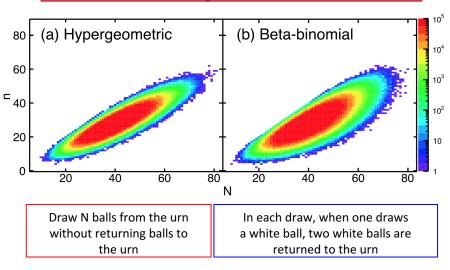
2^{nd} order cumulants of net- Λ



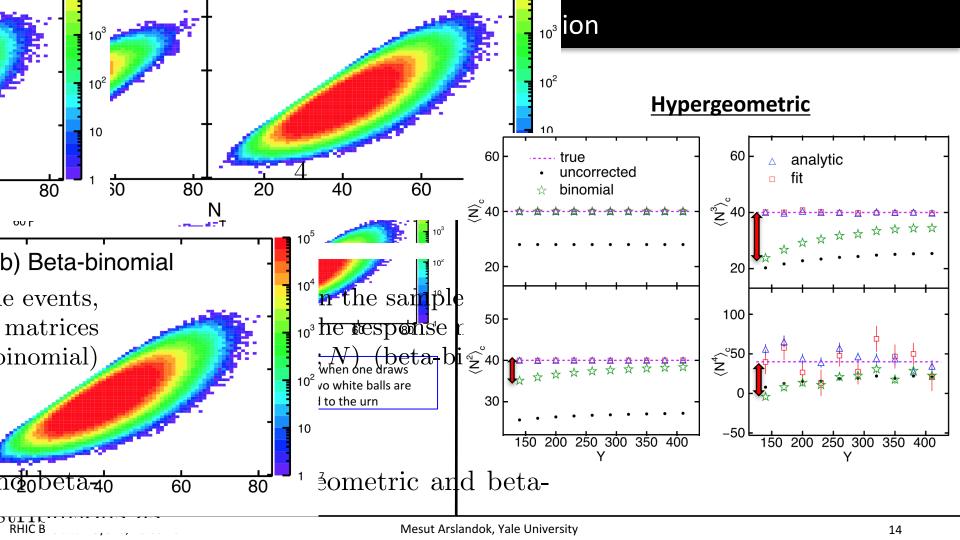
Experimental Challenges

Efficiency correction

What if efficiency loss is not binomial?



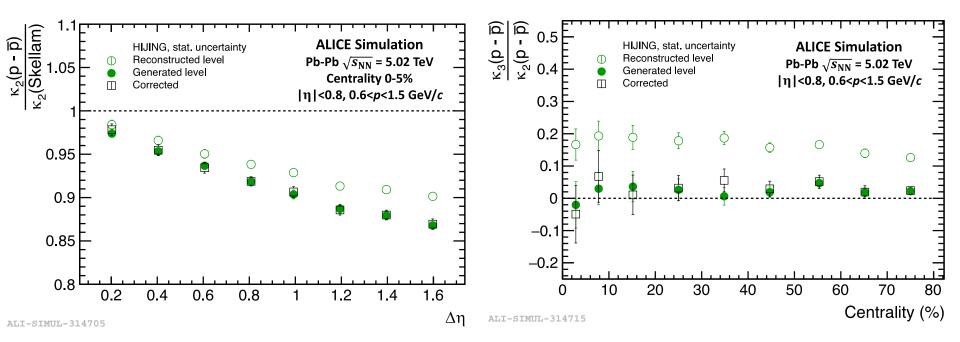
T. Nonaka, M. Kitazawa, S. Esumi, Nucl.Instrum.Meth. A906 (2018) 10-17 T. Nonaka, M. Kitazawa, S. Esumi, Phys. Rev. C 95, 064912 (2017) Adam Bzdak, Volker Koch, Phys. Rev. C86, 044904 (2012)



Efficiency correction

Efficiency correction with binomial assumption:

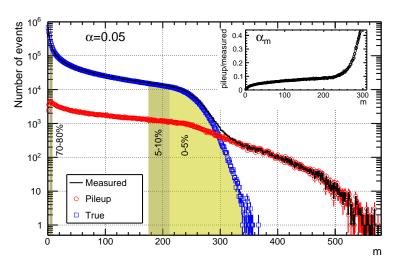
T. Nonaka, M. Kitazawa, S. Esumi, Phys. Rev. C 95, 064912 (2017) Adam Bzdak, Volker Koch, Phys. Rev. C86, 044904 (2012)



- Monte-Carlo (MC) closure test is successful even though there is slight deviation from binomial detector response
- Realistic MC description and track selection criteria are crucial

Event pileup

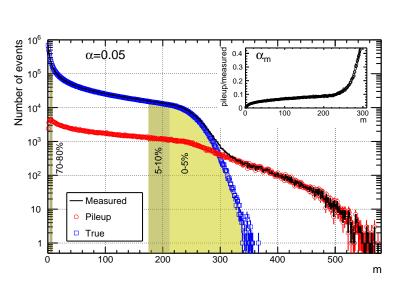
- ➤ Event pileup: When two collision events occur within a small space and time interval, they are identified as a single event
- ➤ Significant impact on the higher order cumulants
- > Event selection criteria is crucial



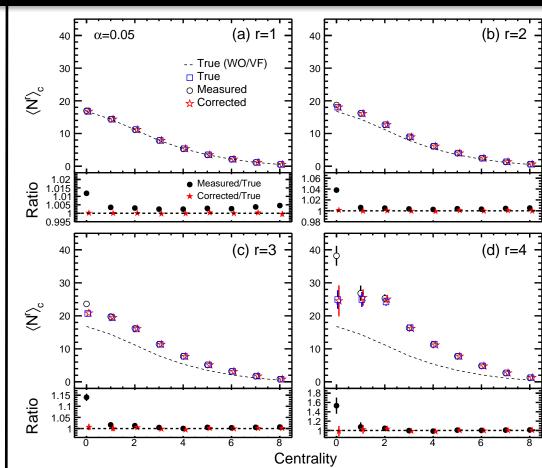
T. Nonaka, M. Kitazawa, S. Esumi, Nucl.Instrum.Meth. A984 (2020)

Event pileup

- ➤ Event pileup: When two collision events occur within a small space and time interval, they are identified as a single event
- Significant impact on the higher order cumulants
- > Event selection criteria is crucial



T. Nonaka, M. Kitazawa, S. Esumi, Nucl.Instrum.Meth. A984 (2020)

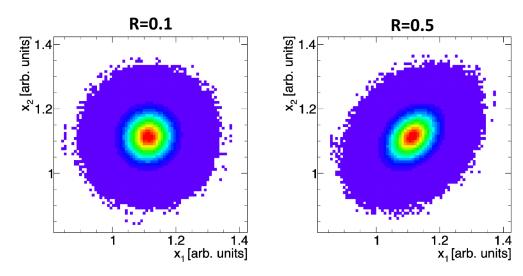


Particle-Set Identification method

Identity Method

solution to "correlations between dE/dx measurements of different particles"

$$R = \frac{\langle (x_1 - \langle x_1 \rangle)(x_2 - \langle x_2 \rangle) \rangle}{\sigma_{x_1} \sigma_{x_2}}$$



Two-particle distribution $\rho(x_1, x_2)$ for pions $(x \to dE/dx)$

M.Gazdzicki, M.I.Gorenstein, M.Pawlowska, A.Rustamov, Nuclear Physics A 1001 (2020) 121915

Particle-Set Identification method

Run 1 & Run 2

- ➤ 1 nb⁻¹ of Pb-Pb collisions
- > ≈1 kHz Pb-Pb minimum bias readout rate
- > MWPC based TPC
- > ITS with 6 layers
- Offline reconstruction

LS2 Upgrade

Run 3 & Run 4 (beyond 2021)

- > 13 nb⁻¹ of Pb-Pb collisions
- ≈50 kHz Pb-Pb minimum bias readout rate
- GEM based TPC
- > ITS with **7 layers**
- Online reconstruction

Particle-Set Identification method

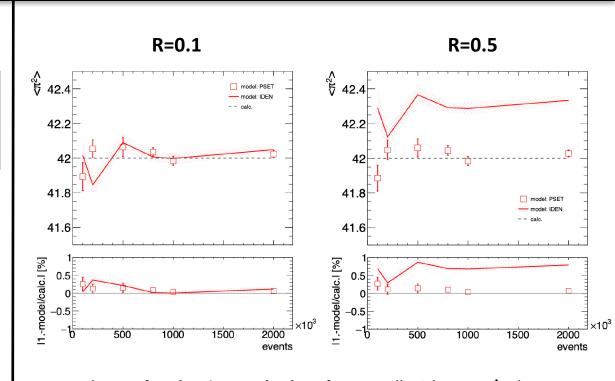
Run 1 & Run 2

- ➤ 1 nb⁻¹ of Pb-Pb collisions
- ➤ ≈1 kHz Pb-Pb minimum bias readout rate
- > MWPC based TPC
- > ITS with 6 layers
- Offline reconstruction

LS2 Upgrade

Run 3 & Run 4 (beyond 2021)

- ➤ 13 nb⁻¹ of Pb-Pb collisions
- > ≈50 kHz Pb-Pb minimum bias readout rate
- GEM based TPC
- > ITS with **7 layers**
- Online reconstruction



- > So far **Identity Method** performs well with **Run 1/2** data
- PSET could be and option for Run 3/4

M.Gazdzicki, M.I.Gorenstein, M.Pawlowska, A.Rustamov, Nuclear Physics A 1001 (2020) 121915

Summary: Current status

Physics interpretation: Volume fluctuations, resonance contributions, baryon number conservation, effect of hydrodynamic evolution, baryon stopping, deuteron formation ...

Summary: Current status

- Physics interpretation: Volume fluctuations, resonance contributions, baryon number conservation, effect of hydrodynamic evolution, baryon stopping, deuteron formation ...
- Net-Q fluctuations: Strongly dominated by resonance contributions
- **➤** Net-p fluctuations:
 - ✓ **1**st order: $T_{fo}^{ALICE} \sim T_{pc}^{LQCD}$
 - ✓ 2nd order: Deviation from Skellam baseline is due to baryon number conservation
 - ALICE data suggests long range correlations
 - ✓ 3rd order: Agrees with Skellam baseline "0" as a function of centrality and pseudorapidity
 - Achieved precision of **better than 5%** for the κ_3/κ_2 results is promising for the higher order cumulants
 - Up to 3rd order ALICE data agree with the LQCD expectations
 - o 4th and higher order: Ongoing analysis with Identity Method (or PSET method)
- Net-Λ fluctuations:
 - ✓ 2nd order: Similar trend as for net-p → Better precision is needed to see the impact of strangeness conservation
 - o **3**rd and higher order: Ongoing analysis with Identity method (or PSET method)

Summary: Current status

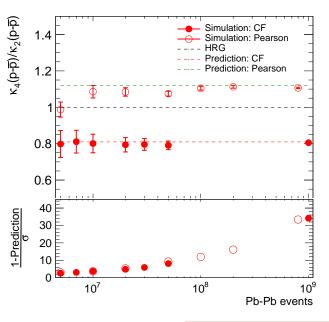
- Physics interpretation: Volume fluctuations, resonance contributions, baryon number conservation, effect of hydrodynamic evolution, baryon stopping, deuteron formation ...
- ➤ **Net-Q fluctuations:** Strongly dominated by resonance contributions
- Net-p fluctuations:
 - ✓ 1st order: $T_{fo}^{ALICE} \sim T_{pc}^{LQCD}$
 - ✓ 2nd order: Deviation from Skellam baseline is due to baryon number conservation
 - ALICE data suggests long range correlations
 - ✓ 3rd order: Agrees with Skellam baseline "0" as a function of centrality and pseudorapidity
 - Achieved precision of **better than 5%** for the κ_3/κ_2 results is promising for the higher order cumulants
 - Up to 3rd order ALICE data agree with the LQCD expectations
 - o 4th and higher order: Ongoing analysis with Identity Method (or PSET method)
- Net-Λ fluctuations:
 - ✓ 2nd order: Similar trend as for net-p → Better precision is needed to see the impact of strangeness conservation
 - o **3**rd **and higher order:** Ongoing analysis with Identity method (or PSET method)
- Experimental Challenges:
 - ✓ Efficiency correction
 - ✓ Event pileup
 - ✓ Correlations between dE/dx measurements of different particles

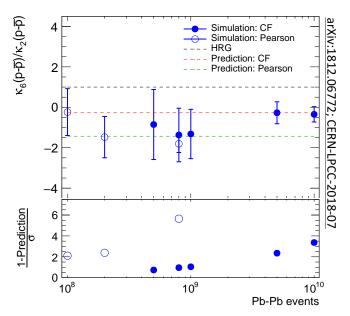
	Event/track selection
	Correction/analysis

- ☐ Correction/analysis methods☐ Realistic detector simulation
- ...

Outlook: After ALICE upgrade

- New ITS (better vertexing) and TPC (continuous readout with GEM technology)
- Record minimum-bias Pb-Pb data at 50kHz → Order of magnitude more events



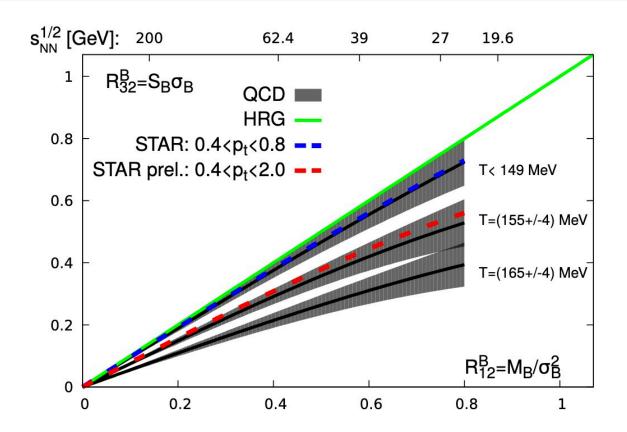


✓ 6th order and maybe beyond

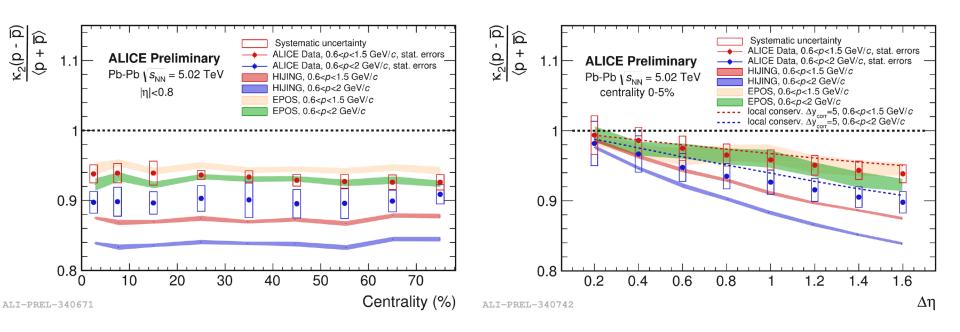
Polyakov-loop extended Quark- Meson model (PQM), G. A. Almasi, B. Friman, and K. Redlich, Phys. Rev.D96(2017) no. 1, 014027

Pearson Curve Method, N. K. Behera, arXiv:1706.06558 [nucl-ex]

BACKUP

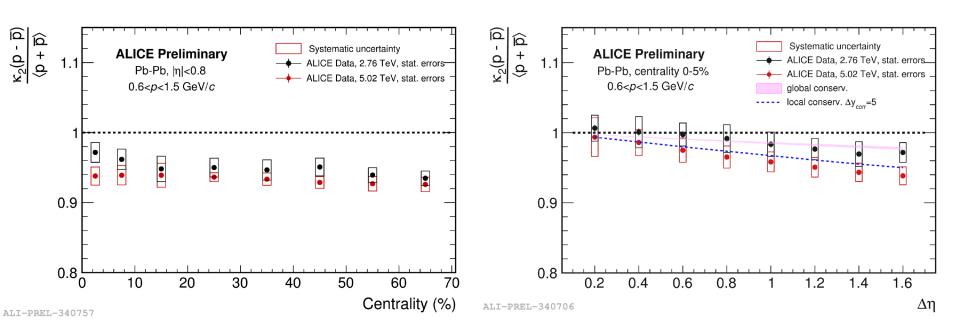


2nd order cumulants of net-p



- Consistent with the baryon number conservation picture
 - Increase in fraction of accepted p, \bar{p} -> stronger constraint of fluctuations due to baryon number conservation
- EPOS & HIJING show this drop qualitatively

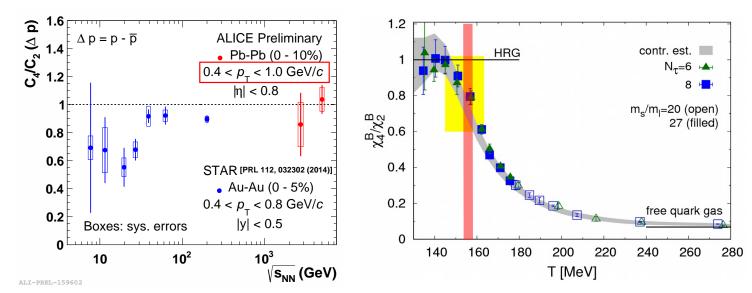
2nd order cumulants of net-p



- Deviation from Skellam baseline is due to baryon number conservation
- ALICE data suggest long range correlations, $\Delta y = \pm 2.5$ unit or longer

C₃/C₂ and C₄/C₂ agree with Skellam at LHC energies?

- Small acceptance
- Low statistics
- Cut-based approach for PID



Analysis within a larger kinematic acceptance using Identity Method is in progress

eliminary

1.0 GeV/c

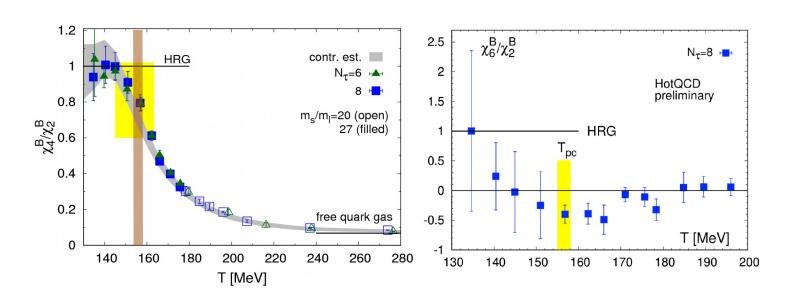
, 032302 (2014)]

s_{NN} (GeV)

) - 5%) .8 GeV/*c*

- 10%)

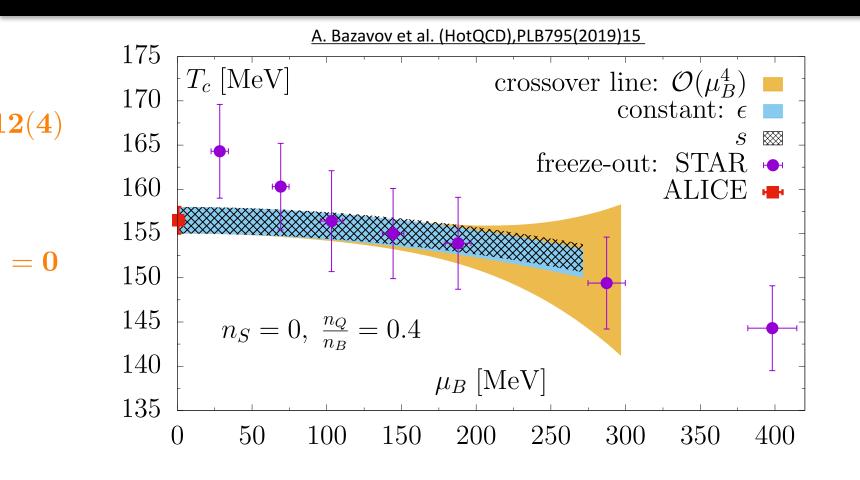
Holy grail: see critical behavior in 6th and higher order cumulants

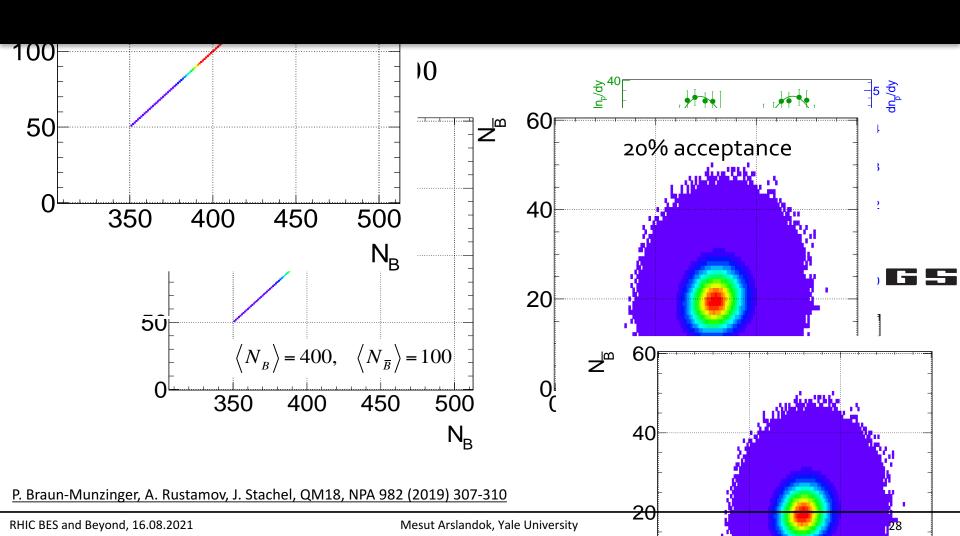


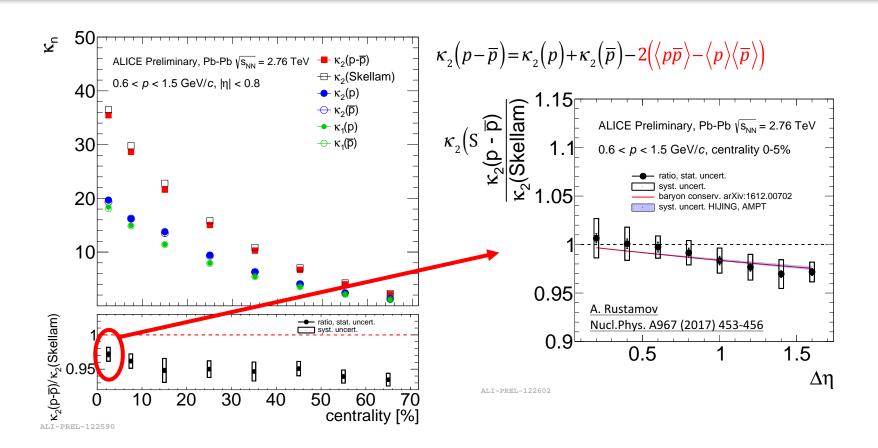
RUN 1: 2nd order (~13M min. bias events)

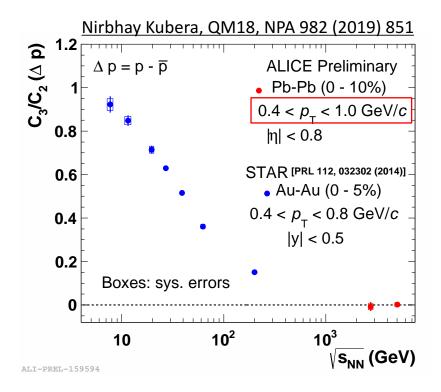
RUN 2: 4th order (~150M central events)

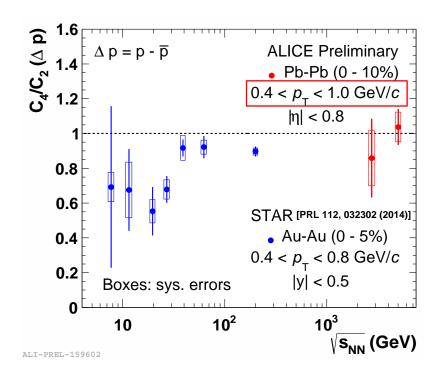
RUN 3: 6th and higher order? (>1000M central events)





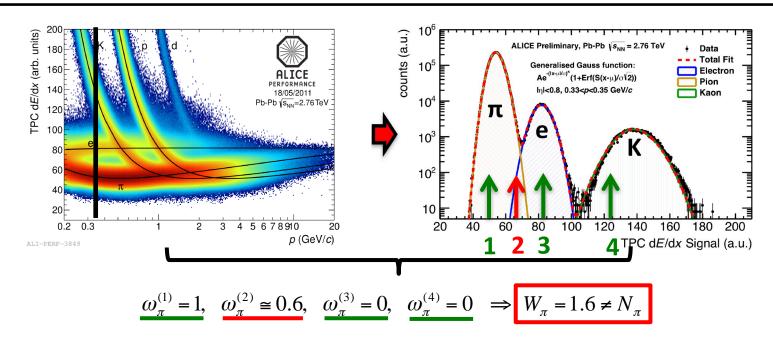






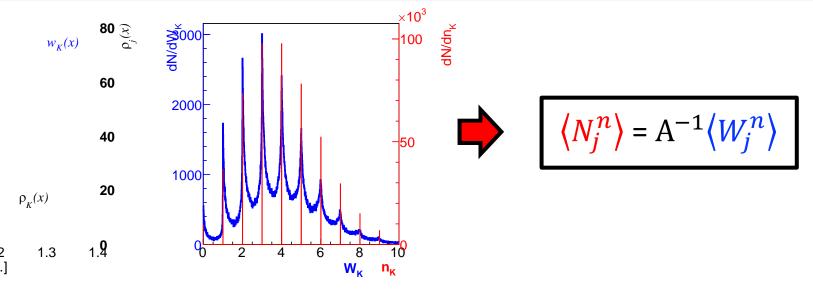
Cut-based approach: count tracks of a given particle type

Identity method: <u>count probabilities</u> to be of a given particle type



A. Rustamov, M. Gazdzicki, M. I. Gorenstein, PRC 86, 044906 (2012), PRC 84, 024902 (2011)

A. Rustamov, M. Arslandok, arXiv:1807.06370, NIM in print

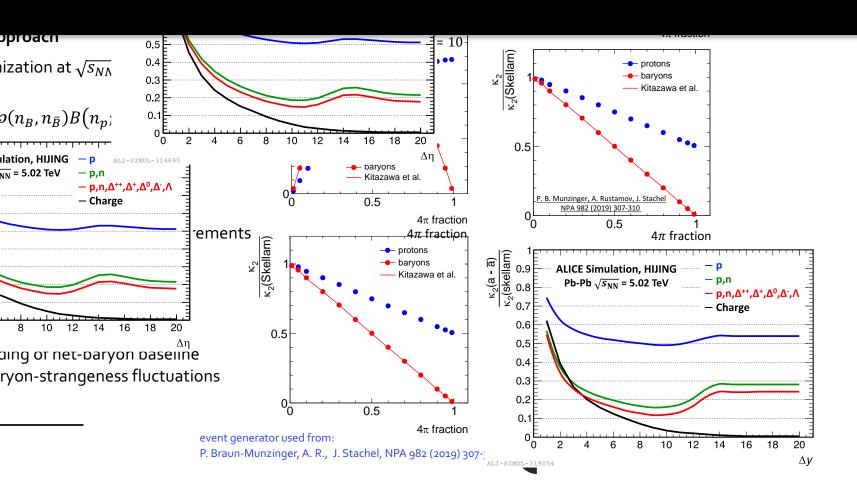


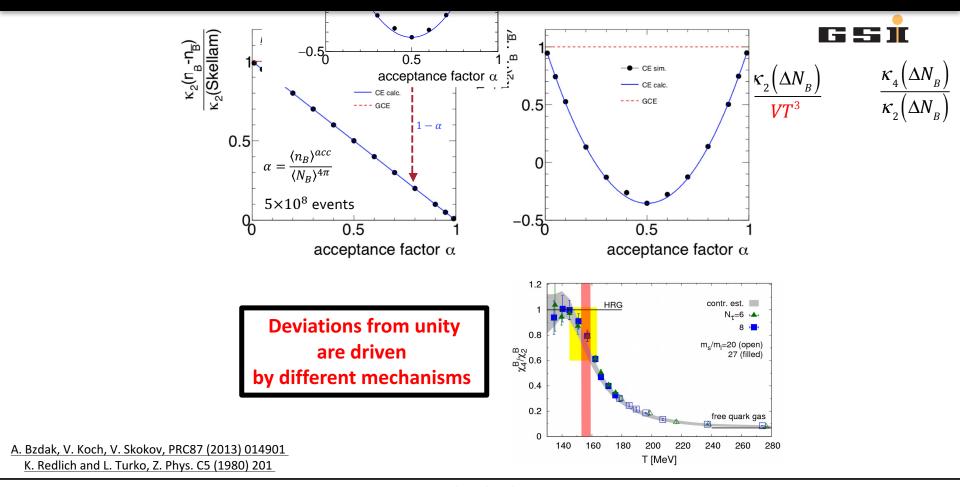
Cut-based approach

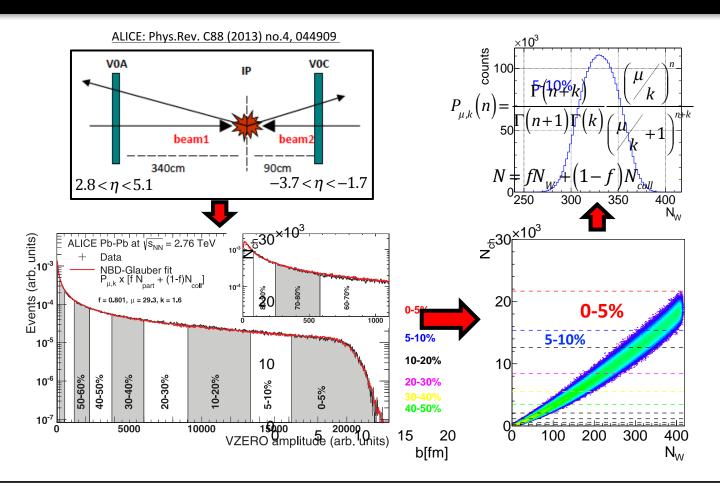
- Uses additional detector information or reject a given phase space bin
- Challenge: efficiency correction and contamination

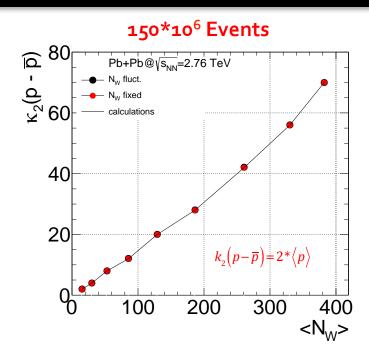
Identity Method

- Gives folded multiplicity distribution
- Allows for larger efficiencies → smaller correction needed
- Ideal approach for low momentum (p<2 GeV/c)



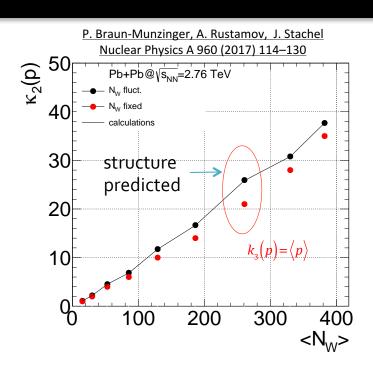




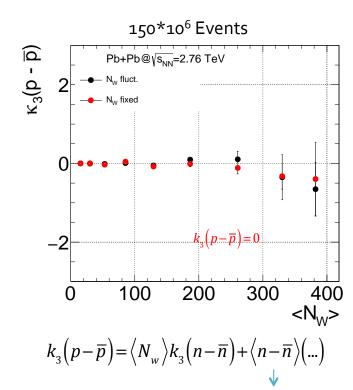


$$k_{2}(p-\overline{p}) = \langle N_{w} \rangle k_{2}(n-\overline{n}) + \langle n-\overline{n} \rangle^{2} k_{2}(N_{w})$$
vanishes for ALICE

 n, \overline{n} n, \overline{n} from single wounded nucleon

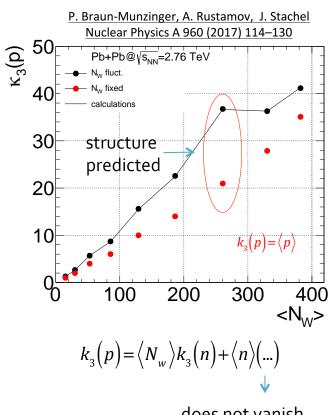


$$k_{2}(p) = \langle N_{w} \rangle k_{2}(n) + \langle n \rangle^{2} k_{2}(N_{w})$$
does not vanish

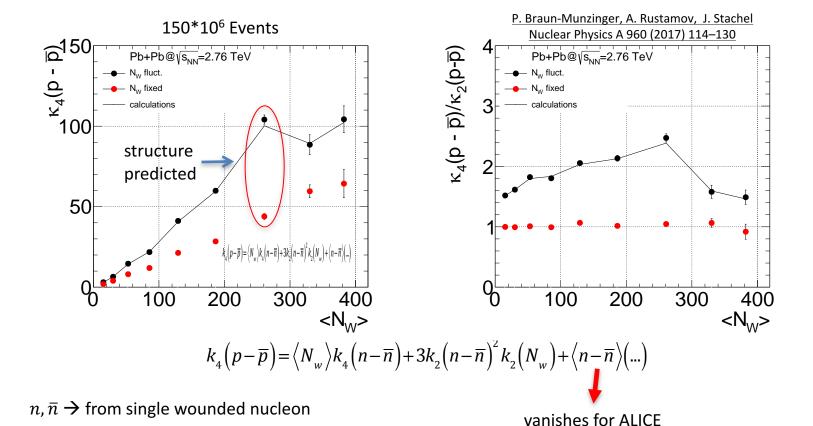


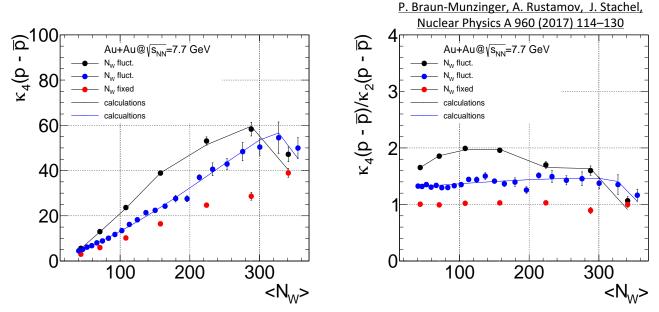
vanishes for ALICE

 n, \overline{n} n, \overline{n} from single wounded nucleon



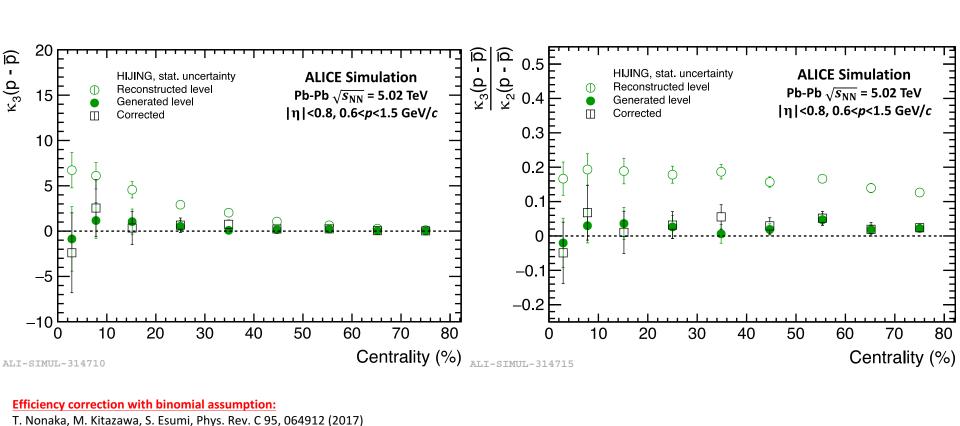
does not vanish





- Subdividing a given centrality bin into smaller ones and then merging them together incoherently.
- Incoherent addition of data from intervals with very small centrality bin width will eliminate true dynamical fluctuations.

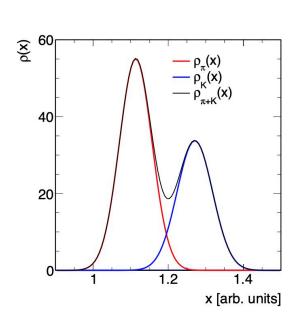
Better publish uncorrected results

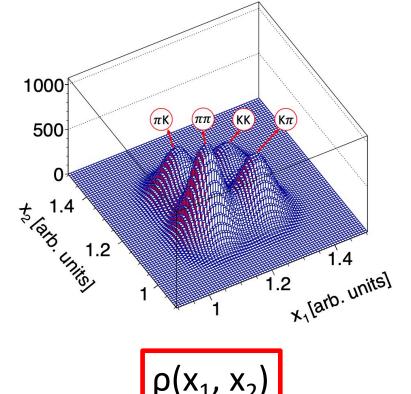


RHIC BES and Beyond, 16.08.2021

Adam Bzdak, Volker Koch, Phys. Rev. C86, 044904 (2012)

Particle-Set Identification method





$$\rho(x_1, x_2)$$

Particle-Set Identification method

Probability density function of the bi-variate normal distribution

$$f(x_1, x_2) = \frac{1}{2\pi\sqrt{|\Sigma|}} e^{-0.5(\mathbf{x} - \langle \mathbf{x} \rangle)^T \Sigma^{-1}(\mathbf{x} - \langle \mathbf{x} \rangle)}$$

$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}, \langle \mathbf{x} \rangle = \begin{pmatrix} \langle x_1 \rangle \\ \langle x_2 \rangle \end{pmatrix}, \Sigma = \begin{pmatrix} \sigma_{x_1}^2 & R\sigma_{x_1}\sigma_{x_2} \\ R\sigma_{x_1}\sigma_{x_2} & \sigma_{x_2}^2 \end{pmatrix}$$

$$R = \frac{\langle (x_1 - \langle x_1 \rangle)(x_2 - \langle x_2 \rangle) \rangle}{\sigma_{x_1} \sigma_{x_2}}$$

Correlations between x_1 and x_2 are introduced only if they belong to the same particle, otherwise they are generated independently, i.e., R is set to 0 in this case

Particle-Set Identification method

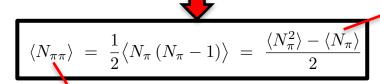
$$\rho(x_{1}, x_{2}) \equiv \rho_{\pi\pi}(x_{1}, x_{2}) + \rho_{KK}(x_{1}, x_{2}) + \rho_{\pi K}(x_{1}, x_{2}) + \rho_{K\pi}(x_{1}, x_{2})$$

$$\equiv (N_{\pi\pi}) \cdot f_{\pi\pi}(x_{1}, x_{2}) + (N_{KK}) \cdot f_{KK}(x_{1}, x_{2}) + (N_{\pi K}) \cdot f_{\pi K}(x_{1}, x_{2}) + (N_{K\pi}) \cdot f_{K\pi}(x_{1}, x_{2})$$

$$\equiv \langle N^{(2)} | (r_{\pi\pi} \cdot f_{\pi\pi}(x_{1}, x_{2}) + r_{KK} \cdot f_{KK}(x_{1}, x_{2}) + r_{\pi K} \cdot f_{\pi K}(x_{1}, x_{2}) + r_{\pi K} \cdot f_{K\pi}(x_{1}, x_{2})),$$

$$F(x_1, x_2 | r_{\pi\pi}, r_{KK}) = r_{\pi\pi} \cdot f_{\pi\pi}(x_1, x_2) + r_{KK} \cdot f_{KK}(x_1, x_2) + r_{\pi K} \cdot f_{\pi K}(x_1, x_2) + r_{\pi K} \cdot f_{K\pi}(x_1, x_2)$$

$$l(\mathcal{X}^{(2)} \mid r_{\pi\pi}, r_{KK}) = -\sum_{j=1}^{\mathcal{N}^{(2)}} \ln \left(F\left((x_1, x_2)_j \mid r_{\pi\pi}, r_{KK} \right) \right)$$
 Maximum Likelihood minimization
$$r_{\pi\pi} + r_{KK} + 2 \cdot r_{\pi K} = 1$$

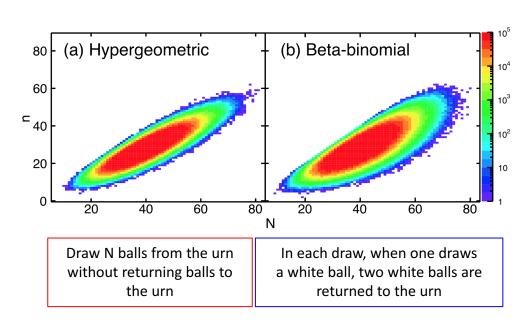


Calculated from 1D dE/dx distribution

Calculated from 2D dE/dx distribution

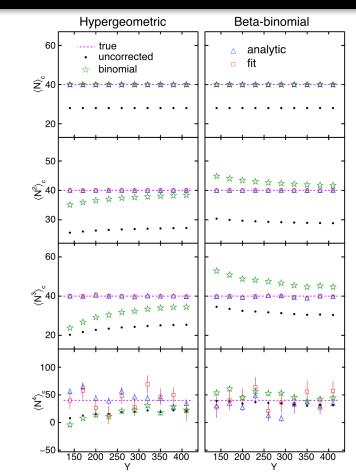
Efficiency correction

What if efficiency loss is not binomial?



T. Nonaka, M. Kitazawa, S. Esumi, Nucl.Instrum.Meth. A906 (2018) 10-17

Adam Bzdak, Volker Koch, Phys. Rev. C86, 044904 (2012)



T. Nonaka, M. Kitazawa, S. Esumi, Phys. Rev. C 95, 064912 (2017)