

DYNAMICAL MODELING OF RHIC BES: WHAT'S THERE AND WHAT'S LEFT?

PROBING THE NUCLEAR MATTER PHASE DIAGRAM

Chun Shen (WSU/RBRC)

RHIC Beam Energy Scan and Beyond

- Search for a critical point & 1st order phase transition
- How does the QGP transport property change with baryon doping?

 $(\eta/s)(T, \{\mu_q\}), (\zeta/s)(T, \{\mu_q\})$

 Access to new transport phenomena Charge diffusion

QCD EQUATION OF STATE AT FINITE DENSITIES

Chun Shen (WSU/RBRC)

RHIC Beam Energy Scan and Beyond

M. Albright, J. Kapusta and C. Young, Phys. Rev. C90, 024915 (2014) A. Monnai, B. Schenke and C. Shen, Phys. Rev. C100, 024907 (2019) J. Noronha-Hostler, P. Parotto, C. Ratti and J. M. Stafford, Phys. Rev. C100, 064910 (2019) J. M. Stafford *et. al*, arXiv:2103.08146 [hep-ph]

Lattice QCD: Taylor expansion up to the 4th order

$$\frac{P_0}{T^4} + \sum_{l,m,n} \frac{\chi_{l,m,n}^{B,Q,S}}{l!m!n!} \left(\frac{\mu_B}{T}\right)^l \left(\frac{\mu_Q}{T}\right)^m \left(\frac{\mu_S}{T}\right)^l$$

Match to Hadron Resonance Gas model at low T

$$-f(T,\mu_J)]\frac{P_{\text{had}}(T,\mu_J)}{T^4} + \frac{1}{2}[1+f(T,\mu_J)]\frac{P_{\text{lat}}(T,\mu_J)}{T^4}$$

 $f(T, \mu_B) = \tanh[(T - T_c(\mu_B) / \Delta T_c]]$

Enabled hydrodynamic simulations at finite $\mu_R (\mu_R/T \le 2.5)$

3D DYNAMICS BEYOND THE BJORKEN PARADIGM

Chun Shen (WSU/RBRC)

RHIC Beam Energy Scan and Beyond

Geometry-Based initial conditions C. Shen and S. Alzhrani, Phys. Rev. C 102, 014909 (2020)

X. Y. Wu, G. Y. Qin, L. G. Pang and X. N. Wang, arXiv:2107.04949 [hep-ph]

Classical string-based initial

conditions

A. Bialas, A. Bzdak and V. Koch, Acta Phys. Polon. B49 (2018) C. Shen and B. Schenke, Phys.Rev. C97 (2018) 024907

- Transport model based initial conditions
 - I. A. Karpenko, P. Huovinen, H. Petersen and M. Bleicher, Phys. Rev. C91 (2015) 064901 L. Du, U. Heinz and G. Vujanovic, Nucl. Phys. A982 (2019) 407-410
- Color Glass Condensate based models

M. Li and J. Kapusta, Phys. Rev. C 99, 014906 (2019) L. D. McLerran, S. Schlichting and S. Sen, Phys. Rev. D 99, 074009 (2019)

M. Martinez, M. D. Sievert, D. E. Wertepny and J. Noronha-Hostler, arXiv:1911.10272 + arXiv:1911.12454 [nucl-th]

Holographic approach at intermediate coupling

M. Attems, et al., Phys.Rev.Lett. 121 (2018), 261601

A COLLISION-GEOMETRY-BASED 3D INITIAL CONDITION

Chun Shen (WSU/RBRC)

Conservations of energy, momentum, and angular momentum are ensured **RHIC Beam Energy Scan and Beyond**

C. Shen and S. Alzhrani, Phys. Rev. C 102, 014909 (2020) S. Ryu, V. Jupic and C. Shen, arXiv:2106.08125 [nucl-th]

Impose energy and momentum conservation on the Glauber geometry Assumption: All of the energy and momentum is deposited into the medium

$$= [T_A(x) + T_B(x)]m_N \cosh y_{\text{beam}}$$

$$\equiv M \cosh(y_{\rm CM}) = \int \tau_0 d\eta_s T^{t\tau}(\tau_0, \eta_s, x)$$

$$= [T_A(x) - T_B(x)]m_N \cosh y_{\text{beam}}$$

 $\equiv M \sinh(y_{\rm CM}) = \int \tau_0 d\eta_s T^{z\tau}(\tau_0, \eta_s, x)$

MINIMUM EXTENSION TO 3D INITIAL CONDITIONS Α

Chun Shen (WSU/RBRC)

RHIC Beam Energy Scan and Beyond

C. Shen and S. Alzhrani, Phys. Rev. C 102, 014909 (2020)

• The mid-rapidity transverse energy density profile $e(x, y) \propto \sqrt{T_A T_B}$

PARTICLE PRODUCTIONS AT RHIC BES AND SPS

C. Shen and S. Alzhrani, Phys. Rev. C 102, 014909 (2020)

The rapidity dependence of particle production and mid-rapidity anisotropic flow are well described by the parametric models

RHIC Beam Energy Scan and Beyond

Chun Shen (WSU/RBRC)

X. Y. Wu, G. Y. Qin, L. G. Pang and X. N. Wang, arXiv:2107.04949 [hep-ph]

ELLIPTIC FLOW AT RHIC BES AND SHEAR VISCOSITY

• The rapidity and centrality dependence of v₂ can set strong constraints on the $(\eta/s)(T, \mu_B)$

Chun Shen (WSU/RBRC)

RHIC Beam Energy Scan and Beyond

I. A. Karpenko, P. Huovinen, H. Petersen and M. Bleicher, Phys. Rev. C91 (2015) 064901 C. Shen and S. Alzhrani, Phys. Rev. C 102, 014909 (2020)

LIMITATIONS OF PARAMETRIC MODELS

- The model calibrations need to be performed for individual collision energy; their predictive power is limited
- The constrained model parameters usually fold many physics together — hard to interpret
- The early-stage dynamics is difficult to constrain important for vorticity and EM probes

$\sqrt{s_{ m NN}} ~({ m GeV})$	$ au_0 ~({ m fm}/c) $	η_0	σ_η	$\eta_{B,0}$	$\sigma_{B,\mathrm{in}}$	σ_B
AuAu & dAu @ 200	1.0	2.5	0.6	3.5	2.0	0
AuAu & dAu @ 62.4	1.0	2.25	0.3	2.7	1.9	0
AuAu & dAu @ 39	1.3	1.9	0.3	2.2	1.6	0
AuAu@27	1.4	1.6	0.3	1.8	1.5	0
AuAu & dAu @ 19.6	1.8	1.3	0.3	1.5	1.2	0
AuAu@14.5	2.2	1.15	0.3	1.4	1.15	0
AuAu@7.7	3.6	0.9	0.2	1.05	1.0	0
PbPb@17.3	1.8	1.25	0.3	1.6	1.2	0
PbPb@8.77	3.5	0.95	0.2	1.2	1.0	0

RHIC Beam Energy Scan and Beyond

TRANSPORT MODEL BASED INITIAL CONDITIONS

Chun Shen (WSU/RBRC)

RHIC Beam Energy Scan and Beyond

J. Cimerman, I. Karpenko, B. Tomavsik and B. A. Trzeciak, Phys. Rev. C103, 034902 (2021)

- The UrQMD initial condition shows a wider boostinvariant plateau near midrapidity than the parametric Glissando model
- The UrQMD initial condition overestimates the initial baryon stopping compare to what the data suggests

THE 3D MC-GLAUBER + STRING MODEL

Chun Shen (WSU/RBRC)

RHIC Beam Energy Scan and Beyond

C. Shen and B. Schenke, Phys.Rev. C97 (2018) 024907

- Collision geometry is determined by MC-Glauber model
- 3 valence quarks are sampled from PDF and randomly picked to lose energy during a collision $\sum x_i \le 1$
- Incoming quarks are decelerated with a classical string tension,

$$d\Sigma_{\nu} = (dz, 0, 0, -dz)$$

AMETERIZE THE VALENCE QUARK ENERGY LOSS

Chun Shen (WSU/RBRC)

B. Schenke and C. Shen, in preparation

 $\langle y_{\text{loss}} \rangle = A y_{\text{init}}^{\alpha_2} [\tanh(y_{\text{init}})]^{\alpha_1 - \alpha_2}$

- A: the slope
- At small y: $\langle y_{\text{loss}} \rangle \propto y_{\text{init}}^{\alpha_1}$ At large y: $\langle y_{\text{loss}} \rangle \propto y_{\text{init}}^{\alpha_2}$
- Std of y_{loss} fluctuations: σ_y $(y_{\text{loss}} \in [0, y_{\text{init}}])$

PARTICLE PRODUCTION AT THE RHIC BES

- minimum bias p+p collisions
- multiplicity distribution

Chun Shen (WSU/RBRC)

RHIC Beam Energy Scan and Beyond

Calibrated with charged particle pseudo-rapidity distribution in

Rapidity loss fluctuations are essential to reproduce the p+p

EXTEND 3D DESCRIPTION TO SMALL SYSTEMS AT BES

- collisions at 200 GeV
- PHENIX measurements from central to peripheral collisions
- low energies

Chun Shen (WSU/RBRC)

RHIC Beam Energy Scan and Beyond

B. Schenke and C. Shen, in preparation

Our model reproduces the STAR multiplicity distribution in the d+Au

The predicted charged hadron rapidity distribution agrees well with the • The role of spectators in the forward rapidity need further investigation at

PARTICLE PRODUCTION IN AA COLLISIONS

Chun Shen (WSU/RBRC)

RHIC Beam Energy Scan and Beyond

B. Schenke and C. Shen, in preparation

Extension to AA collisions gives reasonable descriptions of the exp. data

INITIAL STATE BARYON STOPPING

Quantify the early-stage baryon stopping at RHIC

Chun Shen (WSU/RBRC)

RHIC Beam Energy Scan and Beyond

IDENTIFIED PARTICLE YIELDS AT RHIC BES

reproduced

Chun Shen (WSU/RBRC)

RHIC Beam Energy Scan and Beyond

B. Schenke and C. Shen, in preparation C. Shen, arXiv:2108.04987 [nucl-th]

Collision energy dependence of identified particle ratios can be reasonably

Grand canonical ensemble + baryon stopping + $n_s = 0$ and $n_O = 0.4 n_B$

OUTSTANDING CHALLENGES AT RHIC BES

Chun Shen (WSU/RBRC)

RHIC Beam Energy Scan and Beyond

- saturation density (little guidance from lattice QCD)

Chun Shen (WSU/RBRC)

RHIC Beam Energy Scan and Beyond

Probing equation of state and dissipations at 1.5-2 times of nuclear

No distinctive dominance of single-phase evolution during the collisions

SUMMARY

- Dynamical frameworks are effective to understand particle production and flow in relativistic heavy-ion collisions at the RHIC Beam Energy Scan (BES) and the CERN SPS programs
 - First principles inputs from lattice QCD for EoS
 - The strangeness neutrality condition plays a crucial role on identified particle production at the RHIC BES
 - Elucidating the initial baryon stopping, charge diffusion, and transport properties of QGP in a baryon rich environment
- Explore the phase structure (critical point & 1st-order phase transition) of hot QCD matter with RHIC BES II & fixed target experiments Parametric EoS for $\mu_B > 400$ MeV and many model updates ...

