Adam Kisiel

Joint Institute for Nuclear Research

Warsaw University of Technology

for the NICA Project

MPD at MICA: status and physics program

The Host Institute

Joint Institute for Nuclear Research (JINR) – International Intergovernmental Organization established through the Convention of March 26, 1956 by 11 founding States and registered with the United Nations on 1 February 1957

Adam Kisiel, JINR/WUT

NICA: Unique and complementary

Access neutron star matter in laboratory

NICA Accelerator Complex in Dubna

Adam Kisiel, JINR/WUT

NICA construction live

05-17-2021 Mon 13:43:01

Adam Kisiel, JINR/WUT

RHIC Beam Energy Scan and Beyond 2021, 17 August 2021

видеть все

NICA Main parameters of accelerator complex

Nuclotron

Parameter	SC synchrotron
particles	↑p, ↑d, nuclei (Au, Bi, …)
max. kinetic energy, GeV/u	10.71 (↑p); 5.35 (↑d) 3.8 (<mark>Au</mark>)
max. mag. rigidity, Tm	38.5
circumference, m	251.52
vacuum, Torr	10 -9
intensity, Au /pulse	1 10 ⁹

Booster

	value
ion species	$A/Z \leq 3$
max. energy, MeV/u	600
magnetic rigidity, T m	1.6 – 25.0
circumference, m	210.96
vacuum, Torr	10 -11
intensity, Au /pulse	1.5 10 ⁹

The Collider

Design parameters, Stage II

45 T*m, 11 GeV/u for Au⁷⁹⁺

Ring circumference, m	503,04
Number of bunches	22
r.m.s. bunch length, m	0,6
β, m	0,35
Energy in c.m., GeV/u	4-11
<i>r.m.s.</i> ∆p/p, 10 ⁻³	1,6
IBS growth time, s	1800
Luminosity, cm ⁻² s ⁻¹	1x10 ²⁷

Stage I:

- without ECS in Collider, with stochastic cooling
- reduced number of RF
- reduced luminosity (10²⁵ is the goal for 2023)

Collision system limited by source. *Now Available: C*(*A*=12), *N*(*A*=14), *Ne*(*A*=20), *Ar*(*A*=40), *Fe*(*A*=56), *Kr*(*A*=78-86), *Xe*(*A*=124-134), *Bi*(*A*=209)

Adam Kisiel, JINR/WUT

Booster commissioning

Adam Kisiel, JINR/WUT

First Booster run – Dec 30th, 2020

Booster – the first technical run: *Injected He¹⁺, 3,2MeV/u, 6,5*10¹⁰ ppp Accelerated up to 100 MeV/u* (project 600 MeV/u)

Adam Kisiel, JINR/WUT

NICA running plan

- Extensive commissioning of Booster accelerator
- Heavy-ion (Fe/Kr/Xe) run of full Booster+Nuclotron setup
- Year 2022:
 - Completion of Collider and transfer lines
- Year 2023:

- Initial run of NICA with Bi+Bi @ 9.2 AGeV (other energies a second priority)
- Goal to reach luminosity of 10²⁵ cm⁻²s⁻¹, collect 10⁸ good minimum-bias events
- Year 2024:
 - Goal to have Au+Au collisions and acceleration in Collider (up to 11 AGeV)
- Beyond 2024:
 - Maximizing luminosity, possibility of collision energy and system size scan

Adam Kisiel, JINR/WUT

First physics from BM@N at NICA BM@N

Forward hadron

Neutron detector

calorimeter

Baryonic Matter @ Nuclotron (BM@N) 10 countries, 20 institutions, 246 participants

> Dipole magnet with 6 (half) GEM tracking chambers and 3 Silicon stations inside

mRPC Time-of-flight detectors

Drift chambers for tracking

Adam Kisiel, JINR/WUT

Experiment with BM@N: Short-Range Correlations (SRC)

Experiment at BM@N with a 4A GeV C-beam: ${}^{12}C + p \rightarrow 2p + {}^{10}_{4}Be + p \text{ (pp SRC)}$

First fully exclusive measurement in inverse kinematics probing the residual A-2 nuclear system!

M. Patsyuk et al., arXiv:2102.02626 Accepted for publication in **nature physics**

Experiment with BM@N: A's in C + C, Al, Cu at 4A GeV

Adam Kisiel, JINR/WUT

Multi-Purpose Detector (MPD) Collaboration

AANL, Yerevan, Armenia; Baku State University, NNRC, Azerbaijan; Plovdiv University Paisii Hilendarski, Bulgaria; University Tecnica Federico Santa Maria, Valparaiso, Chile; Tsinghua University, Beijing, China; USTC, Hefei, China; Huzhou University, Huizhou, China; Central China Normal University, China; Fudan University, Shanghai, China; Shandong University, Qingdao, China; SNST, UCAS, Beijing, China; University of South China, China; NICA

12 Countries, >500 participants,42 Institutes and JINR

Spokesperson: **Adam Kisiel** Inst. Board Chair: **Fuqiang Wang** Project Manager: **Slava Golovatyuk**

Deputy Spokespersons: Victor Riabov, Zebo Tang

International Collaboration established in **2018** Still growing, open for new member institutions

Three Gorges University, China; Institute of Modern Physics, CAS, Lanzhou, China; Palacky University, Olomouc, Czech Republic; NPI CAS, Rez, Czech Republic; Tbilisi State University, Tbilisi, Georaia; Joint Institute for Nuclear Research; FCFM-BUAP Puebla, Mexico; FC-University of Colima, Colima, Mexico; FCFM-UAS, Culiacán, Mexico; ICN-UNAM, Mexico City, Mexico; CINVESTAV, Mexico City, Mexico; Universidad Autónoma Metropolitana, Iztapalpa, Mexico; Institute of Applied Physics, Chisinev, Moldova; WUT, Warsaw, Poland; NCNR, Otwock – Świerk, Poland; University of Wrocław, Poland; University of Silesia, Katowice, Poland; University of Warsaw, Poland; Jan Kochanowski University, Kielce, Poland; Institute of Nuclear Physics, PAS, Cracow, Poland; Belgorod National Research University, Russia; INR RAS, Moscow, Russia; NRNU MEPhl, Moscow, Russia; Moscow Institute of Science and Technology, Russia; North Osetian State University, Russia; NRC Kurchatov Institute, ITEP, Russia; Kurchatov Institute, Moscow, Russia; St. Petersburg State University, Russia; SINP, Moscow, Russia; PNPI, Gatchina, Russia; Vinča Institute of Nuclear Sciences, Belgrade, Serbia;

Adam Kisiel, JINR/WUT

Interior of MPD Hall

Adam Kisiel, JINR/WUT

NICA Time Projection Chamber (TPC): main tracker

dual **SAMPA** card (**ALICE** technology)

FEC64SAM -

ength	340 см
outer radius	140 см
nner radius	27 см
gas	90%Ar+10%CH ₄
drift velocity	5.45 см / µs;
drift time	< 30 µs;
# R-O chamb.	12 + 12
# pads/ chan.	95 232
nax rate	$< 7kHz (l = 10^{27})$

Read-Out Chambers (ROCs) are ready and tested (production at JINR) Electronics sets in production Two sites (Moscow, Minsk) tested for electronics production C1-C2 and C3-C4 cylinders assembled TPC flange under finalization

- rows 53
- large pads 5×18 mm²
- small pads 5×12 mm²

Adam Kisiel, JINR/WUT

FE electronics:

MPD Time-of-Flight

Mass production staff: 4 physicists, 4 technicians, 2 electronics engineers Productivity: ~ 1 detector per day (1 module/2 weeks)

All procedure of detector assembling and optical control is performed in a clean rooms ISO class 6-7.

Glass cleaning with ultrasonic wave & deionized water

MRPC assembling

Automatic painting of the conductive layer on the glass

With C doserioning				Soldering HV connector and readout pins		
	Number of detectors	Number of readout strips	Sensitiv e area, m ²	Number of FEE cards	Number of FEE channels	
MRPC	1	24	0.192	2	48	/
Module	10	240	1.848	20	480	
Barrel	280	6720	51.8	560	13440	
Adam Kisie	I, JINR/WUT		RHICE	Beam Energy So	an (1680 chips) an and Beyond 20)2:

Single detector time resolution: 50ps

Purchasing of all detector materials completed So far 40% of all MRPCs are assembled Assembled half sectors of TOF are under Cosmics tests Investigation of solutions for detector integration and echnical installations

NICA Electromagnetic Calorimeter (ECAL)

Barrel ECAL = <u>38400</u> ECAL towers (2x25 half-sectors x 6x8 modules/half-sector x 16 towers/module)

~**350** modules (16 towers each) = 3 sectors produced **420** modules – production started, finish by the end of 2021

Sectors assembling procedure under development. Mass assembling of ECal sectors start in September-October 2021

 Pb+Sc "Shashlyk" ; read-out: WLS fibers + MAPD; L ~35 cm (~ 14 X_o); Segm. (4x4 cm²); σ(E) ~ 5% @ 1 GeV; time res. ~500 ps

 Adam Kisiel, JINR/WUT
 RHIC Beam Energy Scan and Beyond 2021, 17 August 2021
 18/33

NICA Forward Hadron Calorimeter (FHCal)

MPD Physics Programme

G. Feofilov, A. Ivashkin Global observables

- Total event multiplicity
- Total event energy
- Centrality determination
- Total cross-section measurement
- Event plane measurement at all rapidities
- Spectator measurement

V. Kolesnikov, Xianglei Zhu

Spectra of light flavor and hypernuclei

- Light flavor spectra
- Hyperons and hypernuclei
- Total particle yields and yield ratios
- Kinematic and chemical properties of the event
- Mapping QCD Phase Diag.

K. Mikhailov, A. Taranenko Correlations and Fluctuations

- Collective flow for hadrons
- Vorticity, Λ polarization
- E-by-E fluctuation of multiplicity, momentum and conserved quantities
- Femtoscopy
- Forward-Backward corr.
- Jet-like correlations

V. Riabov, Chi Yang Electromagnetic probes

- Electromagnetic calorimeter meas.
- Photons in ECAL and central barrel
- Low mass dilepton spectra in-medium modification of resonances and intermediate mass region

Wangmei Zha, A. Zinchenko Heavy flavor

- Study of open charm production
- Charmonium with ECAL and central barrel
- Charmed meson through secondary vertices in ITS and HF electrons
- Explore production at charm threshold

NICA Centrality and reaction plane in FHCal

Adam Kisiel, JINR/WUT

Hadroproduction with MPD

- Particle spectra, yields & ratios are sensitive to bulk fireball properties and phase transformations in the medium
- Uniform acceptance and large phase coverage are crucial for precise mapping of the QCD phase diagram
 - 0-5% central Au+Au at 9 GeV from the PHSD event generator, which implements partonic phase and CSR effects
 Recent reconstruction chain, combined dE/dx+TOF particle ID, spectra analysis

- MPD provides large phase-space coverage for identified pions and kaons (> 70% of the full phasespace at 9 GeV)
- Hadron spectra can be measured from $p_{T}=0.2$ to 2.5 GeV/c
- Extrapolation to full p_{τ} -range and to the full phase space can be performed exploiting the spectra shapes (see BW fits for p_{τ} -spectra and Gaussian for rapidity distributions)

Ability to cover full energy range of the "horn" with consistent acceptance

Adam Kisiel, JINR/WUT

Strange and multi-strange baryons

Stage'1 (TPC+TOF): Au+Au @ 11 GeV, PHSD + MPDRoot reco.

Adam Kisiel, JINR/WUT

Efficiency and p_{τ} spectrum

Full p_{τ} spectrum and yield extraction, reasonable efficiency down to low p_{τ}

Adam Kisiel, JINR/WUT

Resonances at MPD

· Minbias Au+Au@11 (UrQMD) · Full reconstruction and realistic PID · Topology cuts and secondary vertex · Event mixing for background

Adam Kisiel, JINR/WUT

RHIC Beam Energy Scan and Beyond 2021, 17 August 2021

25/33

NICA Efficiencies and closure tests examples

· Minbias Au+Au@11 (UrQMD) · Full reconstruction and realistic PID · Topology cuts and secondary vertex · Event mixing for background

Adam Kisiel, JINR/WUT

NICA Performance of collective flow studies

Au+Au, $Vs_{NN} = 7.7$, 11 GeV, UrQMD, GEANT3 + MPDRoot reco.

Collective flow a unique and direct way to probe EOS of QCD matter. Excellent flow measurement capabilities in MPD

Adam Kisiel, JINR/WUT

NICA Anisotropic Flow of Reconstructed Decays

Adam Kisiel, JINR/WUT

Hypernuclei at MPD

astrophysical research indicates the appearance of hyperons in the dense core of a **neutron star** Stage 2: central Au+Au @ 5 AGeV; DCM-QGSM

hyper nucleus	yield in 10 weeks		
³∧He	9 · 10 ⁵		
⁴ <mark>∧</mark> He	1 · 10⁵		

Adam Kisiel, JINR/WUT

NICA System size sensitive to phase transition

- Femtoscopy based on two-particle correlation technique (similar to HBT effect in astronomy) probes system size in HIC
- Measurement for pions straightforward and robust, large discovery potential in correlations for kaons and protons, as well as correlations including hyperons

- Clear sensitivity of pion source size to the nature of the phase transitions
- Important and sensitive cross-check of detector performance (two-track resolution)

Adam Kisiel, JINR/WUT

Electromagnetic probes in ECAL

Prospects of dilepton studies

- **Event generator:** UrQMD+Pluto (for the cocktail) central Au+Au @ 8 GeV
- PID: dE/dx (from TPC) + TOF (σ ~100 ps) + ECAL

Yields, central Au+Au at Vs _{NN} = 8.8 GeV								
Particle	le Yields		Decay B	BR	Effic.	Yield		
	4π	y=0	mode		%	/1 W		
ρ	31	17	e+e-	4.7 · 10 - 5	35	7.3 · 10 ⁴		
ω	20	11	e+e-	7.1 · 10 ⁻⁵	35	7.2 · 10 ⁴		
φ	2.6	1.2	e+e-	3 · 10 -4	35	1.7 · 10 ⁴		

Adam Kisiel, JINR/WUT

Summary

- The NICA Complex advanced in construction with important milestones achieved and clear plans for 2021 and 2022
- All components of MPD 1st stage in production
- Broad MPD Physics program with initial NICA beams
- International collaboration to carry out complete QCD phase diagram investigation for at least another decade

Adam Kisiel, JINR/WUT