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Gamma-ray detection for homeland security
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Street scale: Portable devices and 
stationary devices

Block scale: Mobile devices (truck, 
car, drones)

City scale: Airborne devices 
(helicopter) and detector networks

● Goal: detect radioactive sources outside of regulatory control
● Problem: high variability of naturally occurring radioactive materials (NORMs) reduce system sensitivity
● Our approach here: Model radioactive background with contextual sensor data

○ Focus on a simple urban mock facility with known radioisotope composition
○ Build a three dimensional model of the surrounding that includes the most crucial features
○ Include energy-dependence though modeling radioisotope spectrum, providing access to activities 
○ MLEM to attribute radiological measurements to surroundings
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Linear system:

Maximum Likelihood 
Maximization Estimation 

for solving system 
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● 100 NaI(Tl) detectors in a coded mask array

● NovAtel SPAN-CPT GPS/INS receiver

● 2x Velodyne HDL-32E LiDAR units

● 2x Point Grey Ladybug 3 cameras (360 deg view)

● Additional sensors and detectors not used for this 

analysis
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Bandstra et al., “RadMAP: The Radiological Multi-sensor Analysis Platform”, 
NIM A, 840: 59–68 (2016)

Radiological Multi-sensor Analysis Platform (RadMAP)



● Military Operations in Urban Terrain facility at the Fort Indiantown Gap (FtIG) National Guard Base
● RadMAP was brought to FtIG as part of the Multiagency Urban Search Experiment (MUSE) collaboration in 2016

○ Dataset considered for this study is a 164s drive around the facility
○ Only using NaI radiation data
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Military Operation in Urban 
Terrain Facility

RadMAP campaign at FtIG (Pennsylvania)

D.E. Archer et al., Modeling Urban Scenarios & Experiments: Fort Indiantown 
Gap Data Collections Summary and Analysis. United States, 2017.



NORM measurements at FtIG

8

M. W. Swinney, et al., A methodology for determining the 
concentration of naturally occurring radioactive materials in an 
urban environment. Nuclear Technology, 203(3):325-335, 2018.

● A set of naturally occurring radioactive 
materials at the Military Operations in Urban 
Terrain facility have been characterized by 
collaborators

● Mechanically cooled HPGe detectors in lead 
caves open on face exposed to surface

● 70 measurements (~30min each) of asphalt, 
soil, walls, sidewalk and gravel at various 
locations
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Skyshine and cosmics

● Various gamma-ray emission of from surfaces (NORM)
○ Terrestrial — K-40, U-238 series, Th-232 series (KUT)
○ Airborne — radon, skyshine
○ Cosmic — continuum, 511 keV from positrons

● Inversion problem
○ Predict radiation and it’s transport by classifying visible surfaces as seen from the detector system
○ Build a system of linear equations (system response) to solve for the unknown gamma-ray flux from various surfaces

● System response
○ 3D description of the facility (distance and material class)
○ Effective area (detector efficiency and geometry) and description of gamma-ray transport in air
○ NORM modelling for complexity reduction originating from energy dependence of radiological data
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M. S. Bandstra, et al., Attribution of gamma-ray background 
collected by a mobile detector system to its surroundings 
using panoramic video, NIMA 954, 161126, 2020.
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Building a 3D description of the facility

Segmentation and classification of images

● Used Google’s Deep Labelling for Semantic Image Segmentation (DeepLabv3+) 
model on pre-trained Cityscapes1 dataset 

● Applied transfer learning by retraining last, fully-connected neural layer with 45 
hand-labeled images to be closer to ground truth labels:

○ Asphalt
○ Building red
○ Building brown
○ Building white
○ Building roof
○ Concrete

1Cityscapes dataset available at: https://www.cityscapes-dataset.com
2L.Chen, et. al., Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation, ECCV, 
2018, https://github.com/tensorflow/models/tree/master/research/deeplab
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Original image

DeepLabv3+ segmented result

DeepLabv3+ with Transfer Learning 

○ Forest
○ Grass
○ Gravel
○ Sky
○ Vehicle

https://www.cityscapes-dataset.com/
https://github.com/tensorflow/models/tree/master/research/deeplab


Assemble LiDAR data to a model (SLAM)

● Simultaneous Localization and Mapping 
(SLAM) using Google Cartographer

● Minimize cost function between current LiDAR 
data and the reconstructed map from previous 
data

● Rotation frequency of LiDAR 10Hz

W. Hess, D. Kohler, H. Rapp, and D. Andor, Real-Time Loop 
Closure in 2D LIDAR SLAM, International Conference on Robotics 
and Automation (ICRA), IEEE, 2016, 
https://github.com/googlecartographer/cartographer

Building a 3D description of the facility
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https://www.lucidchart.com/documents/edit/8a05ac01-b911-415f-b3ce-5cc6cd244876/0?callback=close&name=slides&callback_type=back&v=445&s=277.6475116141733
https://github.com/googlecartographer/cartographer


Convert Point Cloud to Labeled Mesh
● Projecting labeled images back to point cloud and pick the label that is observed most often at each point.
● Convert labeled point cloud into a triangular mesh (based on ball pivoting algorithm with smart normal orientation algorithm)

○ Implementation of Hidden Point Removal Operator1 into Open3D2

● Simplify mesh to reduce number of vertices by a factor of ~10
● Remaining holes are patched using nearest neighbor interpolation and extending to a flat horizon

1S. Katz, A.Tal, and R. Basri, Direct visibility of point sets, ACM Trans, Graph. 26, 3, Article 24, 2007
2Q. Zhou, J. Park, V. Koltun, Open3D: A Modern Library for 3D Data Processing, arXiv:1801.09847, 2018, http://www.open3d.org 14

Building a 3D description of the facility

Initial point cloud Labeled point cloud

Labeled and simplified mesh Mesh with patched holes

http://www.open3d.org/


Building a 3D description of the facility
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● The distance and material class of all the surfaces in 
the field of view of each detector can be calculated 
at every time step

● Visualization of panoramic view of mesh from 
detector array center

● Alpha channel is distance between 0 (transparent) 
and 80 meter (white)

0°

-90°

90°

-180° 0° 180°



● Effective area Ai is product of efficiency and geometric area
● Simulated using a simple model of RadMAP in all 4π 
● Folded with estimated detector energy resolution
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Detector response (Effective Area)



Down scattering in air

● Down scattering in air has been simulated with a tool developed by Mark S. Bandstra named 
Ersatz (not yet published)

○ A square box with equal sides was used as a simulation volume
○ Gamma-rays were emitted isotropically from a point-like mono-energetic source
○ The sensitive (detection) area covered 1/9th of the surface opposing the source
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Complexity reduction with NORM modeling
Main sources of NORM:

● Terrestrial (KUT)
○ K-40,
○ U-238 series,
○ Th-232 series

● Airborne
○ Radon
○ skyshine

● Cosmic
○ Continuum
○ 511 keV from positrons
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Skyshine and cosmics

● K, U and T from simulation, leaving 3 
free parameters for each label

● Modeling airborne and cosmic is hard, 
energy dependence was not enforced 
(~120 free parameters)

● About 155 free parameters in total, a 
factor of 10 improvement from an 
unconstrained fit



Listmode Maximum Likelihood Estimation Maximization
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Listmode Maximum Likelihood Estimation Maximization (MLEM)

L. Parra, H. H. Barrett, List-mode likelihood: EM algorithm and image quality estimation demonstrated on 
2-D PET, IEEE Trans Med Imaging, Vol. 17, No. 2, pp. 228–235, 1998.
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Results: Gross counts
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Results: KUT Activities and Sky component

M. W. Swinney, et al., A methodology for determining the concentration of naturally occurring radioactive materials in an urban environment. Nuclear Technology, 203(3):325-335, 2018.
A. L. Mitchell, et al., Skyshine contribution to gamma ray background between 0 and 4 MeV. Technical report, Pacific Northwest National Lab. (PNNL), August 2009.
G. A. Sandness, et al., Accurate modeling of the terrestrial gamma-ray background for homeland security applications, 2009 IEEE Nuclear Science Symposium Conference Record 
(NSS/MIC), Orlando, FL, USA (IEEE, Piscataway, NJ, 2009), pp. 126–133.



Related Work: NMF in Oakland (Mark Bandstra)

● Long (40min) continuous drive of RadMAP through Oakland, CA.
● Use various Non-negative Matrix Factorization approaches to 

decompose spectral data into 2-4 components
● Fit NMF weights to coverage of classes in semantically 

segmented video streams.

M. S. Bandstra, et al., Correlations between Panoramic Imagery and Gamma-Ray Background in an Urban 
Area, IEEE Transactions on Nuclear Science (submitted).
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Related Work: Background “templates” for NaI calibration 

● Static sensor detector network deployed in Chicago
● Automated NaI detector calibration based on simulations of most 

common backgrounds and a global fit to the radiation data
● Expected correlation between calibration parameters and temperature
● Radon weight matches rain signature

23
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Related Work: Including attenuation in source localization 

● Inclusion of occlusion and attenuation of materials in source localization
● Efforts ongoing to port algorithm to GPU to enable real-time analysis

M. S. Bandstra, et al., Improved Gamma-Ray Point Source Quantification in Three Dimensions by Modeling 
Attenuation in the Scene, IEEE Transactions on Nuclear Science (accepted).
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Conclusion

● Distinct potassium-40, uranium-238 and thorium-232 activities could be derived in a short 165 second measurement 
based on multi-sensor data and gamma-ray transport simulations and matched to ground truth measurements in 
materials in a mock urban facility

● A realist representation of sky was obtained, increasing our confidence into the result.
● Searches for radioactive sources outside of regulatory control can benefit from background modeling and prediction 

based on contextual sensor data
● KUT modeling was used to calibrate NaI bars in static systems
● Handling of occlusion and attenuation has been used to improve source localization

Publications:
● M. Salathe, B. J. Quiter, M. S. Bandstra, J. C. Curtis, R. Meyer, and C. H.Chow,  “Determining  urban  material  activities  

with  a  vehicle-based  multi-sensor system”, Phys. Rev. Research 3, 023070, 2021
● M. S. Bandstra, et al., Attribution of gamma-ray background collected by a mobile detector system to its surroundings 

using panoramic video, NIMA 954, 161126, 2020
● M. S. Bandstra, et al., “Correlations between Panoramic Imagery and Gamma-Ray Background in an Urban Area”, 2019 

IEEE Nuclear Science Symposium and Medical Imaging Conference (2019), pp. 1–5
● M. Salathe, et al., “Using 3D-Scene Data from a Mobile Detector System to Model Gamma-Ray Backgrounds”, 2019 

IEEE Nuclear Science Symposium and Medical Imaging Conference (2019), pp. 1–4
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● Non-negativity due to Poisson nature of problem
● Some activities and sky bins are close to zero

● Monte-Carlo simulations (5000 samples):
○ Use MLEM solution to calculate count-rate 

estimate
○ Randomly sample from Poisson distribution
○ Calculate MLEM solution for sampled result

● Sample variance ⇒ uncertainty estimation
● Sample covariance ⇒ covariance/correlation matrix
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Uncertainty estimation

Gaussian statistics not applicable and the Fisher 
information and the Cramér-Rao inequality not 

valid for uncertainty estimation.

● Use histogram MLEM1 for reduced random-access memory 
usage and computations and simple Poisson sampling:

○ Single detector placed at center of array
○ Combining counts
○ Summing effective area

● We considered Listmode and Histogram mode similar 
enough for this approximation to be sufficient. 

Histogram Maximum Likelihood Estimation Method MLEM

L. A. Shepp, Y. Vardi, Maximum Likelihood Reconstruction for Emission Tomography, 
IEEE Trans. Med. Imaging. Vol. 1, No. 2, pp. 113-122, 1982.



Correlation Matrix derived from covariance matrix, 
normalized with uncertainties

X being a random vector
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Correlation Matrix
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Correlation Matrix
● Different isotopes but same label are anti-correlate 

⇒ total flux more confined than individual activities 
○ Labels Building roof, and Poles are poorly 

constrained and don’t show this behavior
● Correlations between labels seen at different times:

○ Asphalt/Concrete, Building brown/Forest, Building 
red/Grass

● Anti-correlations between labels seen at the same time:
○ Forest/Grass, Concrete/Grass, Asphalt/Grass, 

Building brown and red/Concrete, Building 
white/Gravel

● Anti-correlation between K, T and sky, correlation 
between U and sky and an anti-correlation band around 
1.8MeV within sky
⇒ balance between terrestrial uranium and radon in sky
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Correlation Matrix
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Analysis pipeline
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https://www.lucidchart.com/documents/edit/70a9cbfc-bd78-4645-a55d-e70bc536c0ee/0?callback=close&name=slides&callback_type=back&v=2682&s=452.3207952755906
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Net flux by labels

Class Ground truth 
[γ/s/cm2]

Camera only1

[γ/s/cm2]
LiDAR

no energy 
threshold
[γ/s/cm2]

LiDAR
with energy 
threshold
[γ/s/cm2]

Vehicle N/A 1.30 ± 0.14 1.77 1.38

Grass 2.462 2.25 ± 0.05 3.66 3.59

Building roof N/A 0.00 ± 0.31 2.19 1.34

Sky N/A 0.54 ± 0.03 0.53 0.61

Forest N/A 0.93 ± 0.05 4.59 1.80

Concrete 0.985 1.05 ± 0.05 1.57 1.18

Building red 0.397 1.18 ± 0.03 1.36 1.54

Asphalt 0.836 0.72 ± 0.10 1.39 1.00

Building white 0.311 / 0.501 1.00 ± 0.05 2.08 1.49

Building brown 0.446 / 0.658 1.02 ± 0.03 1.48 1.39

Gravel 0.831 1.08 ± 0.06 2.67 1.46

▸ Close to ground truth and 
camera only for most labels

▸ Energy threshold was set at 
216keV and resulting flux were 
divided by fraction of events in 
ground truth above threshold

▸ Energy threshold reduces most 
of the fluxes to agree better with 
ground truth

1M. S. Bandstra, et. al., Attribution of 
gamma-ray background collected by a mobile 
detector system to its surroundings using 
panoramic video, NIMA, 2018.

Good agreement of a 2 minute 
measurement with a month long 

measurement campaign
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Results: Full spectral fit vs spectral templates approach

Spectral templatesFull spectral solution
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Results: Full spectral inversion

Overall good 
spectral agreement

Poor fit and weird 
spectral features at 

low energies

Good agreement between 
fit and gross counts

Sky component is 
not very physical

Peaks are 
misaligned
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Average number of 
observed photon in 
detector d at time t 

at energy E’’

Energy dependent 
net flux emitted by 
label i in the scene 

Effective area 
(detector efficiency 

and response) of 
impending 

gamma rays of E’ Label of a solid 
angle element 

(pixel)

Down scattering 
and attenuation 
of gamma rays 

emitted at E

Distance of a solid 
angle element 

(pixel)

Size of solid 
angle element k 

(pixel)

System response
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Simulation of gamma-ray transport in 
materials and through air (see last years 

talk and conference proceedings)
M. Salathe, et al., "Using 3D-Scene Data from a Mobile Detector 
System to Model Gamma-Ray Backgrounds," 2019 IEEE Nuclear 
Science Symposium and Medical Imaging Conference (NSS/MIC), 

Manchester, United Kingdom, 2019, pp. 1-4.

Based on contextual data from mobile 
system, producing a 3D segmented 

representation of the facility (refresher later)

All quantities including 
energies are discrete 

i = 12 labels
E, E’, E’’ = 127 energies (0 - 3072keV)

k = 300x600 pixels
d = 100 detector modules

t = 1650 time steps (0 - 165sec)
r = 256 distances (0 - 80m)

Divide field of 
view of 

detectors into 
solid angle 
elements 
(pixels)~1500 free parameters!

Large multi-dimensional tensor!



Main sources of NORM:
● Terrestrial — K-40, U-238 series, Th-232 series (KUT)
● Airborne — radon, skyshine
● Cosmic — continuum, 511 keV from positrons

Modeling Gamma-ray backgrounds
Precalculated with 

gamma-ray transport 
simulations of thick 

(2m) slab made up of 
soil.

Normalized to 
represent activity of 

isotopes

119 energy bins 
between 216keV 
and 3072keV, all 

unconstrained

Linear system to be 
solved with MLEM
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