Nuclear Data Activities on Fission Yields at LBNL

Eric F. Matthews UC Berkeley October 19, 2021

Fission Yield Measurements at the Fast Loading User Facility for Fission Yields (FLUFFY)

FLUFFY

- The Fast Loading User Facility for Fission Yields (FLUFFY) was developed at LBNL to rapidly shuttle actinide samples between a neutron source and counting array.
- Transport times of <1 second allow observation of shortlived fission products.

FLUFFY

- Flux: 7.2 x 10⁸ n/cm²/s
- This high flux along with the rapid transport time allows for the observation of 80+% of the yield in peak mass chains.

Cave 02

Cave 01

Be(d,n) Target 💐

July 2020 Experiment

- On July 21-26, 2020, ²³⁸U and ²³⁵U samples were irradiated at the Fast Loading User Facility for Fission Yields (FLUFFY) at LBNL's 88-inch cyclotron.
 - 24 hours of 1 s-25 s ²³⁸U data (455.3 mg)
 - 24 hours of 5 s-125 s ²³⁸U data (455.3 mg)
 - ~16 hours of 1 s-25 s ²³⁵U data (~20 mg)
 - Neutron energy spectrum data for
 - 14 MeV deuteron breakup on graphite
 - 8 hour foil pack irradiation
 - Single nTOF irradiation

Measured energy spectrum for 14 MeV deuteron breakup on graphite.

The Experimental Data

 The experimental data produced by FLUFFY is γ emissions as a function of time since irradiation start, time since capsule arrival at counting station, and as a function of the emitting product isotope:

The FIER Model

• The Fission Induced Electromagnetic Response (FIER) code offers a model that produces analogous FPY γ emission data.

• Chi-squared minimization between FIER and experimental data is used to determine fission yields and correct decay data:

$$\chi^{2} = \frac{\left[N_{\gamma}\left(Z, A, I, t_{0}, t_{1}, n_{cycles}\right) - FIER\left(Z, A, I, t_{0}, t_{1}, n_{cycles}\right)\right]^{2}}{\sigma_{N_{\gamma}}^{2}}$$

Mass Chain Analysis

Example: A = 86ullet

 β^{-} β−n

β⁻ β⁻n

Results

• An example of results from the A = 86 mass chain

Emissions of 1564.0 keV γ 's from ⁸⁶Br as a function of time since capsule arrival fit with FIER. ²³⁸U(n,f) data.

Emissions of 2660.0 keV γ 's from ⁸⁶Se as a function of time since capsule arrival fit with FIER. ²³⁸U(n,f) data.

Results

• An example of results from the A = 86 mass chain

Emissions of 1564.0 keV γ 's from ⁸⁶Br as a function of time since capsule arrival fit with FIER. ²³⁸U(n,f) data.

Emissions of 2660.0 keV γ 's from ⁸⁶Se as a function of time since capsule arrival fit with FIER. ²³⁸U(n,f) data.

Results

 γ emission rates from the daughter FP simultaneously constrain the FPY and I_{γ} of the parent.

• An example of results from the A = 86 mass chain

Emissions of 1564.0 keV γ 's from ⁸⁶Br as a function of time since capsule arrival fit with FIER. ²³⁸U(n,f) data.

Emissions of 2660.0 keV γ 's from ⁸⁶Se as a function of time since capsule arrival fit with FIER. ²³⁸U(n,f) data.

Contributors

Lee Bernstein Jon Morrell Josh Brown **Bethany Goldblum Thibault Laplace Donald Nordwick** Aysia Demby Jon Batchelder

Darren Bleuel Chris Brand Anton Tonchev Jack Silano

Bruce Pierson

Matt Gooden

Fission Yield Correlation/Covariance Matrices

Motivation

- Neither the ENDF/B-VIII.0 or JEFF-3.1 fission yield evaluations include information on covariances between fission yields. [1,2]
- Covariances between fission yields affect several important applications:
 - Forensics and safeguards calculations
 - Reactor antineutrino rates
 - Reactor inventory, decay heat, and poisoning

Previous Work

- Pigni et al. 2013
 - Variance estimation with Wahl systematics
- Schmidt 2013
 - Parameter perturbation in the GEF code
- Leray et al. 2017
 - Parameter perturbation in the GEF code
- Kawano and Chadwick 2013
 - Bayesian method for ²³⁹Pu FPY

Previous Work

- Pigni et al. 2013
 - Variance estimation with Wahl systematics
- Schmidt 2013
 - Parameter perturbation in the GEF code
- Leray et al. 2017
 - Parameter perturbation in the GEF code
- Kawano and Chadwick 2013
 - Bayesian method for ²³⁹Pu FPY

- Work by Pigni, Schmidt, and Leray relies on an underlying model of fission and parameter uncertainties.
- Results of these work are not readily accessible due in part to ENDF format limitations.

Motivation

- The goal of this work is to generate a set of covariance matrices for the fissioning systems of a given fission yield evaluation with as little fission model bias/uncertainty as possible.
- This method seeks to use simple conservation rules in order to constrain a sample space for Monte-Carlo estimation.
- The resulting covariance matrix will predominantly reflect the evaluated uncertainties in the independent fission yields.
- Public availability of the covariance matrices is a high priority.

• In order to obtain correlation, conserved quantities can be enforced upon a set of resampled fission yields [1]:

Total Yield: $\sum_{V} 2$

$$\sum_{i} Y_i = Z$$

• In order to obtain correlation, conserved quantities can be enforced upon a set of resampled fission yields [1]:

Total Charge:

$$\sum_{i} Z_i Y_i = Z_{CN}$$

• In order to obtain correlation, conserved quantities can be enforced upon a set of resampled fission yields [1]:

• In order to obtain correlation, conserved quantities can be enforced upon a set of resampled fission yields [1]:

Charge Parity: $\sum_{i} Y_i(Z_1, A_i) = \sum_{i} Y_i(Z_{CN} - Z_1, A_i)$

• In order to obtain correlation, conserved quantities can be enforced upon a set of resampled fission yields [1]:

^{[1] -} Generation of Fission Yield Covariances to Correct Discrepancies in the JEFF Fission Yield Library – L. Fiorito et al. (2015) - https://www.oecd-nea.org/science/wpec/sg37/Meetings/2015 May/SG37 8 LF.pdf

- The way in which a set of fission yields are resampled can be structured to conserve these relationships:
- 1) Randomly selected the "light" or "heavy" side of the fission product spectrum to resample.
- 2) Randomly select (weighted by uncertainty) a product in each *A* chain, resample its yield about its evaluated uncertainty.
- 3) Scale all other yields in that A chain by the same percent change.

0.10

0.08

0.06

0.04

0.02

0.00

80

90

Yield (%)

- The way in which a set of fission yields are resampled can be structured to conserve these relationships:
- 1) Randomly selected the "light" or "heavy" side of the fission product spectrum to resample.
- 2) Randomly select (weighted by uncertainty) a product in each *A* chain, resample its yield about its evaluated uncertainty.
- 3) Scale all other yields in that A chain by the same percent change.

100

110

120

130

140

Evaluation Resampled

 $A_{CN} - \bar{\nu}$

150

160

[1] – Evaluation and Compilation of Fission Product Yields – T.R. England and B.F. Rider (1994)

- 4) Normalize the resampled yields such that they sum to 1.
- 5) Generate the fission yields on the complementary side of the fission product spectrum using the neutron multiplicity of the compound system.

$$Y_{frac}(Z_{CN} - Z, A_{CN} - A - \nu) = P(\nu) Y(Z, A)$$
$$Y(Z_{CN} - Z, A_i) = \sum_{\nu} Y_{frac}(Z_{CN} - Z, A_i)$$

By Step 5 we've ensured all of the conservation rules are met.

- 6) Repeat steps 1-5) *N* times. Select *N* such that statistical noise is minimized.
- 7) Calculate the resulting correlation matrix from the *N* trials.

1.00

 $\cdot 1.00$

Correlation matrix for independent fission yields of ²³⁵U fast fission.

• Example: ¹³⁵Te

- Presented is the covariance between independent yields as function of Z and A and that of ¹³⁵Te.
- The evaluated yield for 135 Te is 2.47 \pm 0.57%

• Features:

- ¹³⁵Te is positively correlated with itself.
- Products along the *A* chain have positive correlation.

• Features:

- ¹³⁵Te is positively correlated with itself.
- Products along the *A* chain have positive correlation.
 - This positive correlation is reflected along a complementary A = 99chain.

• Features:

- ¹³⁵Te is positively correlated with itself.
- Products along the *A* chain have positive correlation.
 - This positive correlation is reflected along a complementary A = 99chain.
- Products along A chains that do not have complementary Z have negative correlation.

Conclusions

- A model-agnostic method for independent fission yield covariance matrix generation is being developed.
- This method has been successfully applied to all compound systems in the ENDF/B-VIII.0 and JEFF-3.1 evaluations.
- The results demonstrate expected behavior and trends.
- Final results serve as an interim solution for independent fission yield covariance matrices until a new evaluation is completed.
 - The results are publicly available at <u>nucleardata.berkeley.edu/FYCOM</u>
 - Publication accepted to Atomic Data and Nuclear Data Tables on April 20, 2021.

Template of Expected Experimental Uncertainties in Fission Yield Measurements

The Templates Project

- Dr. Denise Neudecker of Los Alamos National Laboratory is a leading an effort to assemble "templates" of expected experimental uncertainties in various nuclear properties measurements.
- Each "template" is a peer-reviewed guide to common experimental techniques for a given nuclear property. Tables enumerate expected averages/bounds for standard sources of uncertainty.
- I have written the "Fission Yields" chapter of this manuscript.
 - This covers neutron-induced fission product yields only.

The Templates Project

- The templates that will be published seek to address two primary goals:
- <u>Guide for Experimentalists</u>: the templates will help experimentalists plan their experiments and data analysis to be a thorough and precise as possible.
- <u>Guide for Evaluators</u>: the templates will help evaluators assess the quality of different experiments and filling in missing uncertainty data in legacy measurements.

My Contribution: Fission Yields Template

- Three sources of data were used to produce the fission yields template:
 - 40+ peer-reviewed publications
 - Consultation with experts
 - Fredrik Tovesson
 - Dana Duke, Kristina Montoya
 - Bruce Pierson
 - 18214 EXFOR entries spanning 1943-2019
 - Semi-automated Python script for processing these entries
- Longest part of the template paper
- ~6 month effort

Activation-type Experiments

- Three major steps:
 - Irradiation
 - Separation (optional)
 - Assay
- Each step has its own template.

Activation-type Experiments

- Here's an example of the tables produced for the template:
- Expected minimum values for uncertainties associated with the irradiation of an actinide target (i.e., determination of number of fissions).

		$-\Delta t$	1 ns
Symbol	Correlation	$-\delta c$	Poisson dist.
		Foil Act.	
Relative and Absolute:		$-\delta A_{mon}$	Poisson dist.
$P(E_{inc})$	—	$-\delta c$	Poisson dist.
Absolute Only:		$-\delta\sigma_{mon}$	given by evaluation
N_f	Fully Correlated	Absolute On	nly:
ϕ	Fully Correlated	δN_f	1
σ_f	Fully Correlated	$-\delta\phi$	1
N	Fully Correlated	$-\delta\sigma_f$	given by evaluation
	(strongly if different targets)	$-\delta N$	0.001
t_i	Fully Correlated	- δw	abundance: See databases
B.	Strongly Correlated		or given by enrichment
Du	Strongly Correlated	- δt_i	~ 0
c_T	Strongly Correlated	$-\delta B_u$	1
F_C	Fully Correlated	$-\delta c_T$	1.5
\oslash	-1	$-\delta F_C$	1.5
Ω	Uncorrelated	$\delta \oslash$	<0.1
c	Uncorrelated	δN	0.001
	·	- δw	enrichment: given by manufacture
			abundance: See databases
		$\delta \Omega$	< 0.1

0C

Symbol

 $\delta P(E_{inc})$

nTOF- ΔL Minimum σ

Relative and Absolute:

1 mm

Poisson dist.

Pipeline to Publication

- Broad community input on the FY template was gathered from March 13 to April 16, 2021.
- Final sets of feedback from 11 individuals were received.
- The entire template manuscript was submitted to *Nuclear Data Sheets* in June 2021.

Templates of Expected Measurement Uncertainties

D. Neudecker,^{1,*} A.M. Lewis,² E.F. Matthews,³ J. Vanhoy,⁴ R.C. Haight,¹ A.D. Carlson,⁵ D.L. Smith,⁶ S. Croft,⁷ B. Pierson,⁸ A. Wallner,^{9,10} A. Al-Adili,¹¹ D.P. Barry,² L. Bernstein,^{3,12} R.C. Block,¹³ D. Brown,¹⁴ R. Capote,¹⁵ Y. Danon,¹³ M. Devlin,¹ D.L. Duke,¹ S. Finch,^{16,17} M. Fleming,¹⁸ B.L. Goldblum,¹² G.M. Hale,¹ S. Halfon,¹⁹ M.W. Herman,¹ K.J. Kelly,¹ A. Koning,¹⁵ H.Y. Lee,¹ P. Lisowski,¹ A.E. Lovell,¹ P. Marini,²⁰ K. Montoya,¹ R.O. Nelson,¹ G.P.A. Nobre,¹⁴ G. Noguere,²¹ S. Okumura,¹⁵ N. Otuka,¹⁵ M. Paris,¹ B. Pritychenko,¹⁴ H. Sjöstrand,¹¹ L. Snyder,²² V. Sobes,²³ A. Solders,¹¹ A. Sonzogni,¹⁴ J. Taieb,²⁴ P. Talou,¹ I. Thompson,²² F. Tovesson,⁶ and M.C. White¹ ¹Los Alamos National Laboratory, Los Alamos, NM 87545, USA ²Naval Nuclear Laboratory, Schenectady, NY 12301-1072, USA ³University of California Berkeley, Berkeley, CA 94720, USA ⁴U.S. Naval Academy, Annapolis, MD 21402, USA ⁵National Institute of Standards and Technology, Gaithersburg, MD 20899-8463, USA ⁶Argonne National Laboratory, Argonne, IL 60439-4842, USA ⁷Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA (retired) ⁸Pacific Northwest National Laboratory, Richland, WA 99352, USA ⁹Helmholtz Centre Dresden Rossendorf, 01328 Dresden, Germany ¹⁰ The Australian National University, Canberra ACT 0200, Australia ¹¹ Uppsala University, 75120 Uppsala, Sweden ¹²Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA ¹³Rensselaer Polytechnic Institute, Troy, NY 12180, USA ¹⁴Brookhaven National Laboratory, Upton, NY 11973-5000, USA ¹⁵International Atomic Energy Agency, A-1400 Vienna, Austria ¹⁶Duke University, Durham, NC 27708-0308, USA ¹⁷ Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308, USA ¹⁸OECD Nuclear Energy Agency, 92100 Boulogne-Billancourt, France ¹⁹Soreq NRC, Yavne 81800, Israel ²⁰Univ. Bordeaux, CNRS, CENBG, UMR 5797, F-33170 Gradignan, France ²¹CEA, DEN, Cadarache, 13108 Saint-Paul-les-Durance, France ²²Lawrence Livermore National Laboratory, Livermore, CA 94551-0808, USA ²³ The University of Tennessee Knoxville, Knoxville, Tennessee 37996, USA ²⁴CEA DAM Bruyères-le-Châtel, F-91297, Arpajon, France

Thank You!

Eric F. Matthews