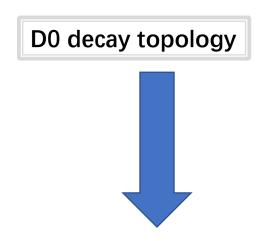
Summary of uncertainty projection study

Yuxiang Zhao

Fast smearing procedure based on Sooraj's demo code

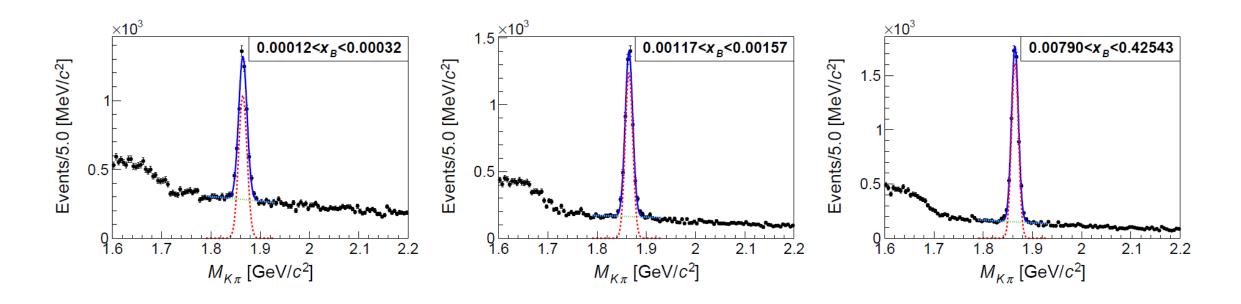
η	σ_p/p - 3.0 T (%)	σ_p/p - 1.5 T (%)	$\sigma(\mathrm{DCA_{r\phi}}) \; (\mu\mathrm{m})$
(-3.0, -2.5)	$0.1 \cdot p \oplus 2.0$	$0.2{\cdot}p\oplus5.0$	$60/p_T \oplus 15$
(-2.5, -2.0)	$0.02 \cdot p \oplus 1.0$	$0.04{\cdot}p\oplus2.0$	$60/p_T \oplus 15$
(-2.0, -1.0)	$0.02 \cdot p \oplus 1.0$	$0.04{\cdot}p\oplus2.0$	$40/p_T \oplus 10$
(-1.0,1.0)	$0.02{\cdot}p\oplus0.5$	$0.04{\cdot}p\oplus1.0$	$30/p_T \oplus 5$
(1.0,2.0)	$0.02 \cdot p \oplus 1.0$	$0.04{\cdot}p\oplus2.0$	$40/p_T \oplus 10$
(2.0,2.5)	$0.02 \cdot p \oplus 1.0$	$0.04{\cdot}p\oplus2.0$	$60/p_T \oplus 15$
(2.5, 3.0)	$0.1{\cdot}p \oplus 2.0$	$0.2{\cdot}p\oplus5.0$	$60/p_T \oplus 15$
		•	***

Summary of cuts


DIS

Q²>2GeV² 0.05<y<0.8 W²>4 GeV² Pion/kaon selection

PID acceptance + Charge match Pi+&K- or Pi-&K+



Pseudo-rapidity region	PID Momentum upper limit (GeV)
(-3,-1)	10
[-1, 1)	6
[1, 3)	50
Otherwise	Not analyzed yet

Selection criteria	$18\mathrm{GeV}\times275\mathrm{GeV}$	$5\mathrm{GeV}\times100\mathrm{GeV}$	$5\mathrm{GeV} \times 41\mathrm{GeV}$
$K\pi$ pair-DCA	$< 80 \mu \mathrm{m}$	$< 80\mu\mathrm{m}$	$< 80 \mu \mathrm{m}$
Decay-Length $_{r\phi}$	$> 90 \mu \mathrm{m}$	$> 80 \mu \mathrm{m}$	$>60\mu\mathrm{m}$
$\cos heta_{r\phi}$	> 0.983	> 0.982	> 0.982

Fit to the mass spectrum

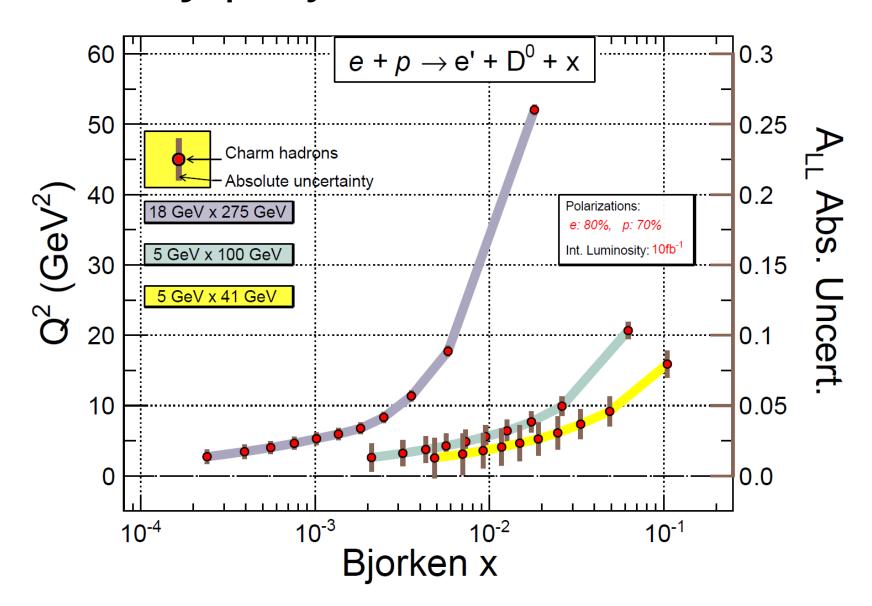
Form the double spin asymmetry

$$A_{LL}^{\vec{e}+\vec{p}\to e'+D^0+X} = \frac{1}{P_e P_p} \frac{N^{++} - N^{+-}}{N^{++} + N^{+-}}$$

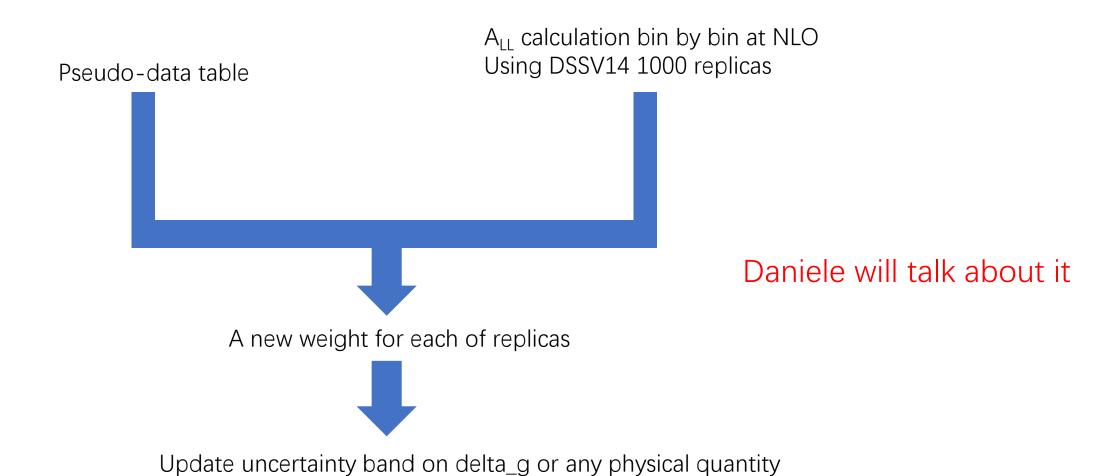
Measured asymmetry, containing signal and background

Signal asymmetry extraction

$$A_{signal} = \frac{1}{f_{Purity}} A_{measure} - \left(\frac{1}{f_{Purity}} - 1\right) A_{background}$$


where f_{Purity} is the D^0 purity, which can be estimated by $\frac{N_{signal}}{N_{total}}$, with N_{signal} (N_{total}) as the number of signal $(N_{signal} + N_{background})$ under the D^0 mass peak (within $\pm 3\sigma$ region). In real data analysis, the uncertainty on f_{Purity} can be significantly reduced by increasing the MC sample comparing to data. The uncertainties for $A_{measure}$ and $A_{background}$ can be written as:

$$\sigma_{A_{measure}} = \frac{1}{\sqrt{N_{total}}}, \sigma_{A_{background}} = \frac{1}{\sqrt{N_{side\ band}}},$$
 (9)


where $N_{side\ band}$ is the number of background counts in the "side band" region. In this scenario, one has

$$\sigma_{A_{signal}} = \frac{\sqrt{N_{total}}}{N_{signal}} \sqrt{1 + \frac{N_{background}^2}{N_{total} \cdot N_{side\ band}}}.$$
 (10)

Uncertainty projection for the DSA

Reweighting to look at impact on delta_g at NLO

Backups

18 GeV x 275 GeV

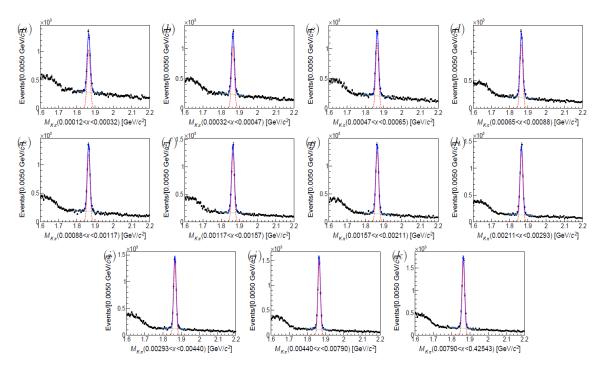


Figure 2: Fitting of the invariant mass of $K\pi$ in different Bjorken x bins at 18 GeV×275 GeV, 3T. The black plots is MC reconstruction, the blue curve is the nominal fit, the red dashed curve is the signal shape, the green dotted curve is the background shape. The background region is $(\mu - 3\sigma, \mu + 3\sigma)$, where μ and σ are the mean value and width of the fitted result of Gaussian function respectively.

200 million e-p collisions

Table 1: Fitting results of the invariant mass of $K\pi$ in different Bjorken x bins 18 GeV×275 GeV, 3T.

x_{\min}	x_{\max}	$N_{ m Signal}$	$N_{ m Background}$
0.00012	0.00032	4413^{+94}_{-94}	2881^{+184}_{-182}
0.00032	0.00047	4081_{-85}^{+86}	2149^{+156}_{-154}
0.00047	0.00065	4366^{+86}_{-86}	2015^{+152}_{-151}
0.00065	0.00088	4543_{-86}^{+87}	1850^{+146}_{-145}
0.00088	0.00117	4529^{+84}_{-83}	1606^{+135}_{-134}
0.00117	0.00157	4719_{-84}^{+84}	1488^{+132}_{-130}
0.00157	0.00211	4888^{+84}_{-83}	1340^{+125}_{-122}
0.00211	0.00293	5006^{+83}_{-83}	
0.00293	0.00440		1000^{+107}
0.00440	0.00790	5008_{-79}^{+81}	940^{+104}_{-101}
0.00790	0.42543	5698_{-87}^{+88}	1284_{-118}^{+120}
0.00117 0.00157 0.00211 0.00293 0.00440	0.00157 0.00211 0.00293 0.00440 0.00790	4529_{-83}^{+84} 4719_{-84}^{+84} 4888_{-83}^{+84} 5006_{-83}^{+83} 4779_{-79}^{+80} 5008_{-79}^{+81}	1606_{-134}^{+135} 1488_{-130}^{+132} 1340_{-122}^{+125} 1190_{-116}^{+118} 1009_{-104}^{+107} 940_{-101}^{+104} 1294_{-120}^{+120}

5 GeV x 100 GeV

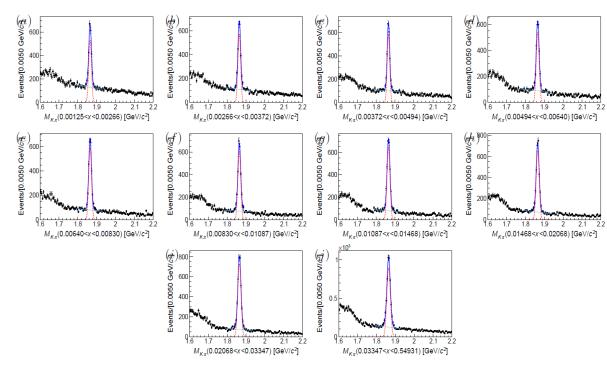


Figure 4: Fitting of the invariant mass of $K\pi$ in different Bjorken x bins at 5 GeV×100 GeV, 3T. The black plots is MC reconstruction, the blue curve is the nominal fit, the red dashed curve is the signal shape, the green dotted curve is the background shape. The background region is $(\mu - 3\sigma, \mu + 3\sigma)$, where μ and σ are the mean value and width of the fitted result of Gaussian function respectively.

200 million e-p collisions

Table 2: Fitting results of the invariant mass of $K\pi$ in different Bjorken x bins 5 GeV×100 GeV, 3T.

x_{\min}	x_{\max}	$N_{ m Signal}$	$N_{ m Background}$
0.00125	0.00266	1935^{+60}_{-59}	1136^{+112}_{-110}
0.00266	0.00372	2028_{-58}^{+58}	934^{+102}_{-100}
0.00372	0.00494	1938^{+56}_{-55}	794^{+93}_{-91}
0.00494	0.00640	2038_{-56}^{+57}	818_{-94}^{+96}
0.00640	0.00830	2165_{-56}^{+57}	702^{+89}_{-87}
0.00830	0.01087	2302_{-58}^{+59}	692^{+90}_{-88}
0.01087	0.01468	2495^{+60}_{-59}	731^{+91}_{-90}
0.01468	0.02068	2632_{-61}^{+62}	694_{-88}^{+90}
0.02068	0.03347	3100_{-66}^{+66}	747^{+95}_{-94}
0.03347	0.54931	4159_{-81}^{+82}	1394_{-130}^{+132}

5 GeV x 41 GeV

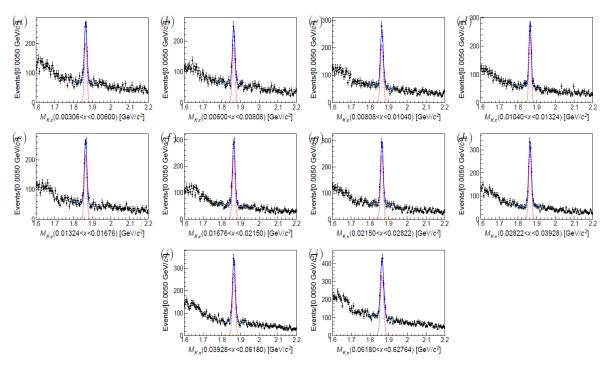


Figure 6: Fitting of the invariant mass of $K\pi$ in different Bjorken x bins at 5 GeV×41 GeV, 3T. The black plots is MC reconstruction, the blue curve is the nominal fit, the red dashed curve is the signal shape, the green dotted curve is the background shape. The background region is $(\mu - 3\sigma, \mu + 3\sigma)$, where μ and σ are the mean value and width of the fitted result of Gaussian function respectively.

100 million e-p collisions

Table 3: Fitting results of the invariant mass of $K\pi$ in different Bjorken x bins 5 GeV×41 GeV, 3T.

x_{\min}	x_{\max}	$N_{ m Signal}$	$N_{ m Background}$
0.00306	0.00600	704^{+39}_{-38}	575^{+79}_{-78}
0.00600	0.00808	651^{+36}_{-36}	514_{-72}^{+74}
0.00808	0.01040	800^{+39}_{-39}	522_{-74}^{+76}
0.01040	0.01324	731_{-36}^{+37}	422_{-66}^{+68}
0.01324	0.01676	743^{+37}_{-36}	416^{+68}_{-65}
0.01676	0.02150	860^{+39}_{-38}	444_{-68}^{+70}
0.02150	0.02822	853^{+39}_{-38}	470^{+72}_{-70}
0.02822	0.03928	1026^{+42}_{-41}	469^{+73}_{-71}
0.03928	0.06180	1057^{+43}_{-43}	554^{+79}_{-77}
0.06180	0.62764	1430^{+55}_{-54}	1016^{+110}_{-106}