Finite-Element-Modeling of HTS Cables: Progress Update

Christian Messe

Overview

- About Me
- Project Goals
- Finite Element Code Development
 - Motivation
 - Current Structure and Previous Examples
 - Special things on Magnetic Formulations
- Near- and Longterm Roadmaps
- Possible Cooperations

Christian Messe

2017

PhD of Aerospace Engineering

University of Stuttgart, Germany

About Me

analysis of hypersonic vehicles

- finite element modeling
- scientific code development

2018

Postdoc at University of Colorado

DARPA Transformative Design Program: Topology Optimization

- B-Spline based hierarchical meshes
- finite element kernel development

2019 -2020

Scientist at German Aerospace Center

thermal analysis of spacecraft reentry

June 2021

Postdoc at Berkeley Lab

Accelerator Technology and Applied Physics Division

Goals Within the MPD Project

short term:

support conceptual design of HTS cables and magnets

- magnetization
- current distribution
- quenching

long term:

- development of new methods for HTS modeling (adaptive meshing, XFEM ...)
- creation of a hierarchical, multiphysics toolbox for HTS cable modeling

general idea:

modify my pre-existing finite element code for this application

General Thoughts on Finite-Element-Modeling

understanding the difference to common problems

Motivation: Why use a custom code?

Reasons for developing a custom code

- full control over modeling approach
- forced to fully understand modeling
- maximum flexibility of data structure
- free choice of pre- and post processing tools
- no license fees

Tradeoffs

- more developing overhead
- limited human resources

Design Requirements for a Custom C++ Framework

- maintainable and flexible code structure
- portability (gcc, clang, icc, linux / darwin)
- parallel support (MPI)
- simple MATLAB-like dense linear algebra (Armadillo, Blaze)
- interface to standard open source solver libraries (MUMPS / PETSc)
- data-IO support for common open-source data formats:

- Preprocess: GMSH (*.msh)

Postprocess:
 ParaView
 (*.vtk/*.exo)

- Special Purpose: Python (*.xml/*.hdf5)

Development History

- started coding in December 2018 as personal project under open-source license
- Spring 2019: Involvement in DLR TRANSIENT project
- · Winter 2020: involvement in industry project on cryogenic rocket engine cooling

Code Architecture

code size: ca. 175 kloc

Current Finite Element Database

	1D	surface elements				
linear	·					
quadratic	oo					
rendipity						

Example of Previous Application

demonstrate maturity of codebase

Example of Previous application

Goal: compute surface temperatures during spacecraft reentry and find appropriate thermal shielding and insulation

- precomputed reentry trajectory
- computed wall temperature-dependent heat load using the DLR Tau code for Tw=300K, 600K, 900K, 1200K

Karl et. al: Aerothermal Databases and Heat-Load Prediction for Re-Usable Launch Vehicle Configurations, HiSST: 2nd International Conference on High-Speed Vehicle Science Technology, 2020, Burges, Belgium

Classical Workflow

geometry generator mesh generator kernel DOF manager Solver Post Processor

- specifies geometric shape
- specifies blocks and sidesets
 (e.g. groups with same material)
- generates nodes and elements
- provides node-to-element connectivity
- handles list of equations to be solved
- distributes data among processors
- creates degrees of freedom based on mesh
- builds the system of equations
- creates degrees of freedom based on mesh
- creates finite elements based on mesh elements

visualizes the data

[Python / GMSH]

[FEM code]

[PETSc]

[ParaView]

Example of Previous application

Example of Previous application

Galerkin Least Squares projection

$$\int_{\Omega} \delta \boldsymbol{\phi}^{\mathbf{T}} \left[\boldsymbol{N}^{\mathbf{T}} \boldsymbol{N} \hat{\boldsymbol{\phi}} - \boldsymbol{N}^{\mathbf{T}} \boldsymbol{\phi} \right] dV = 0$$

CFD Mesh

FE Mesh

Example of Previous application

Finite-Element Modeling of Electromagnetics

first thoughts, mathematical approach and curiosities

Finite-Element Modeling of Electromagnetics

first thoughts, mathematical approach and curiosities

first steps to be taken:

- understand state-of-the-art modeling approaches
- unique aspects of electromagnetics compared to other FE problems
- implement relevant benchmark problems
- identify challenges and possible solutions

Finite-Element Blocks

Example of use: Superconductor in electric field

quasistatic approach
 (neglecting displacement currents)

$$\operatorname{div} \boldsymbol{d} = \rho_{v} + 0$$

$$\operatorname{div} \boldsymbol{b} = 0$$

$$\operatorname{curl} \boldsymbol{e} = -\frac{\partial}{\partial t} \boldsymbol{b}$$

$$\operatorname{curl} \boldsymbol{h} = \boldsymbol{j} + \frac{\partial}{\partial t} \boldsymbol{d}$$

The Formulation Problem

b-conform formulation (aka a-v)

$$\int_{\Omega} \delta \boldsymbol{a}^{\mathbf{T}} \boldsymbol{\sigma} \frac{\partial}{\partial t} \boldsymbol{a} \, dV + \int_{\Omega} (\operatorname{curl} \delta \boldsymbol{a})^{\mathbf{T}} \boldsymbol{v} \operatorname{curl} \boldsymbol{a} \, dV + \int_{\Omega} \delta \boldsymbol{a}^{\mathbf{T}} \boldsymbol{\sigma} \operatorname{grad} \boldsymbol{v} \, dV = \int_{\partial \Omega} \delta \boldsymbol{a}^{\mathbf{T}} (\boldsymbol{h} \times \boldsymbol{n}) \, dS.$$

$$\int_{\Omega} (\operatorname{grad} \delta \boldsymbol{v})^{\mathbf{T}} \boldsymbol{\sigma} \frac{\partial}{\partial t} \boldsymbol{a} \, dV + \int_{\Omega} (\operatorname{grad} \delta \boldsymbol{v})^{\mathbf{T}} \boldsymbol{\sigma} \operatorname{grad} \boldsymbol{v} \, dV = \int_{\Omega} (\operatorname{grad} \delta \boldsymbol{v})^{\mathbf{T}} \boldsymbol{j} \, dV,$$

dof: magnetic vector potential ${\bf a}$ and electric voltage ${\bf v}$ problem: infinite electric conductivity of super conductor ${\bf \sigma}{
ightarrow}$ ∞

h-conform formulation (aka h-ф)

$$\int_{\Omega} \delta \mathbf{h}^{\mathbf{T}} \frac{\partial}{\partial t} (\mathbf{\mu} \, \mathbf{h}) \, dV + \int_{\Omega} (\operatorname{curl} \delta \mathbf{h})^{\mathbf{T}} \, \mathbf{\rho} \operatorname{curl} \mathbf{h} \, dV = \int_{\partial \Omega} \delta \mathbf{h}^{\mathbf{T}} \, \mathbf{e} \times \mathbf{n} \, dS$$

dof: magnetic flux density \mathbf{h} problem: infinite electric resisitvity of air $\rho \rightarrow \infty$

$$b = \operatorname{curl} a$$

$$v = \mu^{-1}$$

$$\sigma = \rho^{-1}$$

Way Out

Block-Wise Selection of Formulation

basic idea:

- use a-v formulation in air and h-ф formulation in superconductor
- use appropriate coupling at interfaces

- → different blocks have different equations and degrees of freedom
- → requires overhaul of DOF-managing module in code (in progress)

Proof of Concept

Dipole-Problem with current finite element code

The curl conformity problem

exact solution of an electric field

FEM solution using Lagrangian Elements (node-based)

source: http://web.pdx.edu/~gjay/

→ for the Maxwell-equations, classical finite element formulations can fail due to not being curl-conform across element edges

Way Out

Taking a look at how element degrees of freedom work

- in classical Lagrange elements, the degrees of freedom sit on the nodes
- the sum of the flux over all edges of an element must be zero, which is not guaranteed in this formulation!

Way Out

Introduction of edge-based degrees of freedom (aka Nédélec elements)

- · in Nédélec elements, the degrees of freedom sit on the edges (and faces for higher order)
- → mesh-module of code must generate edges and keep track of edge directions (complete)
- → DOF-managing module must be able to handle both node- and edge-based dofs (in progress)
- →edge-dofs can't be visualized with ParaView: need L2 projection on nodes

Edge Elements

Proof of Concept: simple analytic field with known solution for curl

$$\vec{a} = \frac{1}{\sqrt{x^2 + y^2}} \left[\begin{array}{c} x \\ y \end{array} \right]$$

$$\nabla \times \vec{a} = \frac{\partial a_y}{\partial x} - \frac{\partial a_x}{\partial y}$$

Edge Elements

Proof of Concept: L2-projection of Edge Field on Nodes for Visualization

- green: exact solution
- red: approximation using L2-projection

Intermediate Summary

- need to use a-formulation in air and h-formulation in superconductor
 - code must be able to handle block-specific equations and dofs
- node-based element approach can fail in some circumstances
 - need to use edge-elements in superconducting area
 - need L2-Projection for visualization
 - ▶ need to consider impact on conditioning of system matrix

Next Steps ...

proof of concept and code validation

Near Term Roadmap

superconducting block problem

- finish new DOF management system
- simple transient problem with changing current
- investigate behaviour of quenching model
 - ▶ investigate suitable formulations (h, a-v, Nédélec ...)
 - ► impact of non-linear material laws → code stability, XFEM?
 - identify suitable Krylov solvers and preconditioners
 - code hardening
- extension to 3D and axisymmetric problems

benchmarks

- compare code against ANSYS User Elements SCPack
- validate code against selected benchmark problems from HTS Modeling Workgroup

Long Term Roadmap

comparison with experiments

- investigate magnetization and current distribution in tapes and cables
 - → compare with ATAP and MDP experiments
- support development of better geometries for CORC cables

possible cooperations

- LBL Computational Research Division develop better preconditioning techniques
- knowledge and data exchange within the MDP program
- University of Colorado at Boulder:
 XFEM and adaptive meshing techniques