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Christian Messe
About Me

PhD of Aerospace Engineering

University of Stuttgart, Germany

2017

• analysis of hypersonic vehicles

• finite element modeling

• scientific code development

2018
Postdoc at University of Colorado

DARPA Transformative Design Program: 
Topology Optimization

• B-Spline based hierarchical meshes

• finite element kernel development

2019

-2020

Scientist at German Aerospace Center

• thermal analysis of spacecraft reentry

June 
2021 Postdoc at Berkeley Lab


Accelerator Technology and Applied Physics Division



Goals Within the MPD Project
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short term:


support conceptual design of HTS cables and magnets

• magnetization

• current distribution

• quenching


long term:


• development of new methods for HTS modeling

(adaptive meshing, XFEM …)


• creation of a hierarchical, multiphysics toolbox for HTS cable modeling


general idea:

modify my pre-existing finite element code for this application



General Thoughts on Finite-Element-Modeling
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understanding the difference to common problems



Reasons for developing a custom code

Finite Element Code Development
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Motivation: Why use a custom code?

• full control over modeling approach

• forced to fully understand modeling

• maximum flexibility of data structure

• free choice of pre- and post processing tools

• no license fees

Tradeoffs

• more developing overhead

• limited human resources



Finite Element Code Development
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Design Requirements for a Custom C++ Framework

• maintainable and flexible code structure 


• portability (gcc, clang, icc, linux / darwin)


• parallel support (MPI)


• simple MATLAB-like dense linear algebra  (Armadillo, Blaze)


• interface to standard open source solver libraries (MUMPS / PETSc)


• data-IO support for common open-source data formats:


• Preprocess:                       GMSH                 (*.msh)


• Postprocess:                      ParaView            (*.vtk/*.exo)


• Special Purpose:                Python               (*.xml/*.hdf5)



Finite Element Code Development
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Development History

• started coding in December 2018 as personal project under open-source license


• Spring 2019: Involvement in DLR TRANSIENT project


• Winter 2020: involvement in industry project on cryogenic rocket engine cooling



Finite Element Code Development

9

Code Architecture
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Example of Previous Application
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demonstrate maturity of codebase



Finite Element Code Development
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Example of Previous application

Karl et. al: Aerothermal Databases and Heat-Load Prediction for Re-Usable Launch 

Vehicle Configurations, HiSST: 2nd International Conference on High-Speed Vehicle 

Science Technology, 2020, Burges, Belgium

• precomputed reentry trajectory


• computed wall temperature-dependent heat load 
using the DLR Tau code for 

Tw=300K, 600K, 900K, 1200K

Goal: compute surface temperatures during 
spacecraft reentry and find appropriate thermal 
shielding and insulation
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Classical Workflow

mesh 
generator

• generates nodes and elements

• provides node-to-element connectivity

geometry 
generator

• specifies geometric shape

• specifies blocks and sidesets 

(e.g. groups with same material)

kernel
• handles list of equations to be solved

• distributes data among processors

DOF manager
• creates degrees of freedom based on mesh

• builds the system of equations

Solver
• creates degrees of freedom based on mesh

• creates finite elements based on mesh elements

Post Processor • visualizes the data

[PETSc]

[ParaView]

[Python / GMSH]

[FEM code]



Finite Element Code Development

14

Example of Previous application

Trajectory

Simulation

similarity 
decoupling

Heatloads

using CFD

projection on 
FE mesh

FE Simulation



Finite Element Code Development
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Example of Previous application

Trajectory

Simulation

similarity 
decoupling

Heatloads

using CFD

projection on 
FE mesh

FE Simulation

CFD Mesh FE Mesh

St1 D Pq
!1 u1 .hr ! hw/

Galerkin Least Squares projection
Z

˝

ı!T
h
N TN O! ! N T!

i
dV D 0



Finite Element Code Development
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Example of Previous application

Trajectory

Simulation

similarity 
decoupling

Heatloads

using CFD

projection on 
FE mesh

FE Simulation



Finite-Element Modeling of Electromagnetics

17

first thoughts, mathematical approach and curiosities
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• understand state-of-the-art modeling approaches


• unique aspects of electromagnetics compared to other FE problems


• implement relevant benchmark problems


• identify challenges and possible solutions

first thoughts, mathematical approach and curiosities
Finite-Element Modeling of Electromagnetics

first steps to be taken:




div d D !v

div b D 0

curl e D ! @

@t
b

curl h D j C @

@t
d
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Finite-Element Blocks

super 
conductor

coil coil

air / vacuum

• quasistatic approach 

( neglecting displacement currents )

Example of use: Superconductor in electric field

0

0
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The Formulation Problem
b-conform formulation (aka a-v)

dof: magnetic vector potential a and electric voltage v
problem: infinite electric conductivity of super conductor σ→ ∞

h-conform formulation (aka h-ɸ )

dof: magnetic flux density h

problem: infinite electric resisitvity of air ρ→ ∞

b D curl a

! D "!1

# D $!1

Z
˝

ıhT @

@t
.! h/ dV C

Z
˝

.curl ıh/T " curl h dV D
Z

@˝
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Z
˝
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@

@t
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˝
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˝
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Way Out

h

a,v a,v

a

• use a-v formulation in air and h-ɸ 
formulation in superconductor


• use appropriate coupling at interfaces

basic idea:

→ different blocks have different 
equations and degrees of freedom


→ requires overhaul of DOF-managing 
module in code (in progress)

Block-Wise Selection of Formulation
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Proof of Concept
Dipole-Problem with current finite element code
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The curl conformity problem

source: http://web.pdx.edu/~gjay/

exact solution of an electric field FEM solution using Lagrangian 
Elements (node-based)

→ for the Maxwell-equations, classical finite element formulations can fail due to not being 
curl-conform across element edges
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Way Out
Taking a look at how element degrees of freedom work

1
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• in classical Lagrange elements, the 
degrees of freedom sit on the 
nodes


• the sum of the flux over all edges of 
an element must be zero, which is 
not guaranteed in this formulation!
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Way Out
Introduction of edge-based degrees of freedom (aka Nédélec elements)

• in Nédélec elements, the degrees of freedom sit on the edges (and faces for higher order)

→ mesh-module of code must generate edges and keep track of edge directions (complete)


→DOF-managing module must be able to handle both node- and edge-based dofs (in progress)


→edge-dofs can’t be visualized with ParaView: need L2 projection on nodes
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Edge Elements
Proof of Concept: simple analytic field with known solution for curl 

singularity
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Edge Elements
Proof of Concept: L2-projection of Edge Field on Nodes for Visualization

• green: exact solution

• red: approximation using L2-projection
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Intermediate Summary

• need to use a-formulation in air and h-formulation in superconductor

‣ code must be able to handle block-specific equations and dofs


• node-based element approach can fail in some circumstances

‣ need to use edge-elements in superconducting area

‣ need L2-Projection for visualization

‣ need to consider impact on conditioning of system matrix



Next Steps …
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proof of concept and code validation
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Near Term Roadmap

• finish new DOF management system

• simple transient problem with changing current

• investigate behaviour of quenching model


‣ investigate suitable formulations (h, a-v, Nédélec … )


‣ impact of non-linear material laws→code stability, XFEM?


‣ identify suitable Krylov solvers and preconditioners


‣ code hardening 

• extension to 3D and axisymmetric problems

superconducting block problem

benchmarks
• compare code against ANSYS User Elements SCPack

• validate code against selected benchmark problems from 

HTS Modeling Workgroup
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Long Term Roadmap
comparison with experiments

possible cooperations
• LBL Computational Research Division


 develop better preconditioning techniques


• knowledge and data exchange within the 
MDP program


• University of Colorado at Boulder:

 XFEM and adaptive meshing techniques

• investigate magnetization and current distribution in tapes and cables 

→compare with ATAP and MDP experiments


• support development of better geometries for CORC cables


