===

STEWARDSHIP SCIENCE GRADUATE FELLOWSHIP

@ awrence Berkeley National Laboratory, Berkeley, CA 94720, USA

3Dept. of Chemistry, Washington University, St. Louis, MO 63130, USA

*Fe(p,p's) Lifetime Measurements with GRETINA

L. Kirsch?, L. A. Bernstein?!, A. O. Macchiavelli?, D. G. Sarantites3,

H. L. Crawford?, M.Cromaz?, P. Fallon?, C. M. Campbell?
@WDept. of Nuclear Engineering, University of California, Berkeley, CA 94720, USA

~

A

f(rrrerer ‘m

Introduction

The Gamma-Ray Tracking In-beam Nuclear Array! (GRETINA) is
one of the world’s premier ¥-ray spectrometers. GRETINA uses
electrically segmented high-purity germanium crystals to reconstruct
the energy and position of each ¥-ray interaction point with high
resolution, thereby enabling the tracking of the paths of ¥-rays emitted

from nuclear reactions. 1S, Paschalis et al., NIM A 709, 44 (2013).

¥, observed

Recoil Doppler Shift

Nuclear stopping time is on the order of ps while most nuclear
decays are on the order of fs. Therefore the nucleus emits a ¥-ray while
moving a fraction of the speed of light toward the detector. This causes
a measureable doppler shift in the energy of the emitted %-ray:

E, couce (1T V) where v =vcos®/c

Eight Quads each containing
four Germanium Crystals

Individual Crystal < 2.5keV
energy resolution and < 10ns
timing resolution at 1.33MeV

Phoswich Wall charged particle
detector for energy, angle, and
timing of outgoing protons

Decay of the Directly Populated 2657 keV 2+ Level
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Fig. 2: Top: Doppler shifted ¥ data for the 2*, — 2* in *°Fe for known recoil and emission angles.

Bottom: An illustration of the reaction: Phoswich Wall detects proton (blue) after scattering off “°Fe
(red) which emits a ¥ (yellow) that is detected by GRETINA. © is angle between ¥ and recoiling “°Fe.

Direct Lifetimes

Knowledge of the averge

doppler shift according to E. =E__ /(1 + v_) on an event by event
basis. When t  is correct, no residual slope remains in the E_ vs. v
plot as seen below for the 1810 keV transistion.

emission velocity removes the effect of the

C

3MeV Excitation, Correction of t o= 2fs

3MeV Excitation, Correction of t o= 30fs

Slowing Down Simulation

SRIM® generates *°Fe recoil trajectories and outputs (E, X, y, z)
collision coordinates yielding v(t). ¥-rays emit at a random time
according to the exponential decay law toward detectors at every ©.
This monte carlo approach results in an average recoil emission
velocity v, for a given initial recoil energy E , © , and halt-life t, .

3J. Ziegler, srim.org

Experiment

The Argonne Tandem and Linear Accelerator System (ATLAS)
produced pulses of 16 MeV protons every 40 ns for an average current
of 750 pA on a 1 mg/cm* iron target enriched to 99.7% in *°Fe. 80
hours of beam uptime provided a 3 kHz particle-¥ master trigger.

The (p,p's) reaction produced excited states of **Fe up to roughly the
neutron separation energy. The charged-particle detector array
Phoswich Wall? measured the energy, timing, and angle of the forward
scattering protons. 2D, G. Sarantites et al., NIM A 790, 42 (2015).

Fig. 3: *°Fe trajectories. Nuclear collisions cause
wide angle deflections contributing to the biggest /
loss of doppler shift in the detector direction.
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Radiative Strength

f(E,)=

f1/2IE1'> EerEiLﬂanC

Sliding the proton gate up in energy grants access to the average
halflife of the quasicontinuum states in °°Fe. A second exponential
decay law accounts for the feeding halflife in the simulation. The
radiative strength function f(E,)relates to halflives as follows:

mﬂIZIPIEiI with excitation energy E, level density p(E)

 transistion multipolarity I assumed dipole
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_ Preliminary <l> Fig. 5: Radiative Strength Function
S measured with the 1810 keV ¥%-ray.
B <I> <]> Indirect feeding from states 4 to 9
o <l> MeV modify the doppler shift of
this primary %-ray.
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