

Progress of the SMCT Nb₃Sn coil R&D and FY22 plan

A.V. Zlobin/I. Novitski, Fermilab

Outline

- ✓ Nb₃Sn SMCT R&D goals and milestones
- √ 1st SMCT coil design and fabrication status
- ✓ 2nd SMCT coil design optimization
- ✓ Assembly and test schedule and resources

Nb₃Sn SMCT R&D goals and milestones

The 2020 Updated Roadmaps for the US Magnet Development Program Compiled by Soren Prestemon, Kathleen Amm, Lance Cooley, Steve Gourlay, David Larbalestler, George Velev, Alexander Zlobin & With Major Contributions from Technical Leads and Collaborators within the US MDP

SMCT R&D goals:

- a) develop and demonstrate a new approach to manage radial and azimuthal stresses in brittle cos-theta coils, through the study and reduction of magnet training;
- b) demonstrate a bore field up to 11 T at 1.9 K with 120-mm aperture in two-layer Nb3Sn dipole magnets with stress-managed coils;
- c) demonstrate up to 17 T at 1.9 K with a 60-mm aperture in a four-layer Nb3Sn dipole magnet with stress-managed outer coils.

Milestone #	Description	Target
Al-M1a	Development and test of stress management concept using a 2-layer large-	March 2022
	aperture and 4-layer small-aperture cos-theta coils and dipole mirror structure	
Ai-M2a	Development, fabrication and test of stress management concept in a 2-layer 120-	April 2023
	mm dipole with the field up to 11 T.	
Al-M3a	Assembly and test of stress-management concept in a 4-layer 60-mm 17 T dipole	April 2024
	with stress management.	

Cos-theta dipole coils with stress management (SMCT)

SMCT coil design, W/R/I tooling, practice coil

Large aperture dipole coil

Practice coil winding/impregnation/ QC

SMCT coil part fabrication by GE Additive

Direct Metal Laser Melting (DMLM) technology

- 316L stainless steel powder
- Two orientations of end part printing:
 - 25-degree angle to eliminate support
 - vertical with surface support in blue

SMCT coil parts printed as two-layer cylinders

- surface support inside large blocks removed at GE Additive
- narrow inter block channels in LE with surface supports to be removed at Fermilab

Contract signed in December 2020, parts delivered by the end of February 2021

Coil structure size control

Control of SMCT coil end parts by micrometer on granite table.

CMM
measurements of
surface deviation
from CAD of SMCT
coil straight section .

-0.424 0.424 0.126

-0.388

-0.424

-0.424

3 month to perform all the measurements.

SMCT coil structure post-processing

Completed:

- inner coil ID increased and pole slots added
- Technological holes in coil parts and winding mandrel added

In progress:

- removing support materials in IL cable transition slots
- outer coil OD, pole slot and technological holes

Improvement of coil end support

Rod system reinforcement

- o 4 new rods for inner coil
- o 6 rods old rods for outer SMCT coil
- SMCT coil rod anchoring
- End contraction control for SMCT coil

Iron yoke modification and measurement

Status:

- Iron yoke ID increased to accommodate SMCT coil
- Two holes added to reinforce coil end support
- Selected laminations measured using CMM and optic table => rework of laminations in progress

Mirror block design and fabrication

- •Single piece for accuracy (similar to the winding mandrel)
- Drawing has been made
- Fabrication starts in October

Skin preparation

- 3rd time skin re-using
- Welding groove machined and prepared for welding
- Larger groove size => control welding to optimize shrinkage was discussed with welder

SMCT coil design optimization

- •Short interlayer transition to avoid support elements in transition channels
- More compact LE and RE
- Split straight section in two equal pieces for printing
- •Design work starts after finishing 1st mirror design

Coil winding preparation

- Cable insulation
- Ultrasonic part cleaning
- Part assembly and surface adjustment
- Adding coil ground insulation
- •We may need practice winding of first 1-2 blocks
 - o Winding procedure
 - o Reduce risk of shorts

Magnet assembly and test

- •Mirror assembly with both inner and outer (SMCT) coils
- Two-step test
 - o 1st test: only SMCT coil connected
 - o 2nd test: both coils connected in series
- •Only small splice box modification is needed

Nb₃Sn SMCT coil assembly and test schedule

- •1st test in Jan-Apr 2022
 - ✓ milestone March 31
- •2nd coil design, part procurement and coil fabrication start in February 2022
 - ✓ Resources need to be planned
- Possible delay due to limited availability of techs due to
 - > COVID-19
 - ➤ Al Rusy last working day end of October

