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/ Performance Fast datastream (~ 1Ms/s /ch)
Temperature” _—~ MOMIEOMNE ™ (AE, field disturbances)

Strain Field quality

Medium datastream (~ 10-100 kS/s /ch)

(Voltage, field
quality probes)

Magnetic field
disturbances

=

(\\

Coil voltage Acoustic emission Slow datastream (~ 1 — 1000 s/s /ch)

\QuenCh de:c{ction ‘ (Strain, temperature)

and localization
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* Long interface cables with
multiple interconnects

* High impedance sources _ o
Cryogenic amplification

e Significant EM noise
injected with the power

Cryogenic ADC
and RT data
pre-processing

e Large number of channels » Cryogenic multiplexing
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2ensors Passive components \
* Wire loops (quench antenna}s) % + Resistors (metal film) \ <
- : % Temperature is not a significant factor
* Resistive strain gauges
e Capacitors (XOR, tantalum) [ .
* Capacitive sensors ™\ Capacitance decreases
» (affected by the cryogenic liquid) :ii/ﬂ  Diodes -
Temperature is not a significant factor Forward voltage drop increases L 4

Active components

* Hall effect sensors (GaAs) ‘ |
Sensitivity improves Q

MOSFETs and MOSFET-based ICs

* Acoustic emission sensors
made with piezoelectric
ceramics

Op-amps (CMOS, SiGe)

Digital electronics, FPGA

adjustment of operational conditions

Sensitivity decreases, C.‘G a Many work cryogenically, but require some
quality factor increases @ @lﬁ\'
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ELECTRICAL CHARACTERISTICS (Ta = 25°C)

CHARACTERISTIC SYMBOL TEST CONDITION MIN. | TYP. [MAX.| UNIT
Internal Resistance (Input) Rq Ic=5mA 450 | — 900 Q 1.00
Residual Voltage Ratio VHO/VH | Ic=5mA, B=0/B=0.1T — | — | %10 % Timelsl
Hall Voltage (Note 1) VH Ic=5mA, B=0.1T 55 | — 140 mV . . . ®
Temperatuze Goofient. |y~ [Io=6mA, B=0.T R Current re-distribution along HTS CORC® cable
(Note 2) T1=26°C, Ta=120C ' terminals as function of time during quench
Linearity (Note 3) AKg Ig=5mA, B1=0.1T, B2=0.5T | — — 2 % .
Specific Sensitivity (Note 4) | K* | Ig=5mA, B=0.1T — [ 27| — |xt0-2/1 development measured with the Hall array
Internal Resistance (Output) Royur |Ic=5mA 580 | — | 1350 0 . . . .
i ] ] CORC® cable terminations with integrated Hall arrays for
GaAs planar ion-implanted Hall effect sensors (made for automotive quench detection”, R. Teyber et al,, Supercond. Sci.Technol.,
applications) are excellent performers at cryogenic temperature. 33, (2020)
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A robust “workhorse” sensor developed and
used at LBL on most of our magnets. It is now
also used by other labs (FNAL BNL, CERN) and
various projects.

= Based on a single P-channel enhancement
mode MOSFET

= Uses only 2 wires (twisted pair or coax)

= Bandwidth is ~300 kHz

= Power consumptionis ~ 25 mW

= 2-3mV rms of noise
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220 nF -
(1000V DC)_[

| SN - R AR G

Coupling box

“Acoustic emission during quench training of
superconducting

accelerator magnets”, M. Marchevsky, G. Sabbi,
H. Bajas, S. Gourlay, Cryogenics 69, 50-57 (2015)
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: . Various supporting structures for AE sensors
* 2/3 the size of the original sensor

* M2 mounting screw
e <5 mm thickness (including the

S

piezo-element) .‘.——
e Better high-frequency response - o c—
Same 2-wire interfacing, fully PEEK
compatible with old interface and
powering hardware - -

R. Teyber, M. Maruszewski
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Dispersion plot for traveling acoustic
waves in a 0.4 mm diam. brass rod
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e The entire sensor is one low-profile
soldered board, including the piezo.

* It can be installed away from the magnet;
acoustic signal is fed from the magnet by
a waveguide wire

* Enables multiple sensors being integrated
in a single board, probing specific
locations inside the magnet that
otherwise are impossible to reach with
standard diagnostics
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Quench in Nb3Sn CCT Subscale 3 dipole monitored with the old and new style acoustic sensors
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= Based on ultra-low-power Maxim Integrated MAX44290 chip

=  Power consumption at 4.2 Kis ~15 mW with +/- 3V rail to rail output

= High impedance (> 1 MQ), diode-protected input

= Excellent noise performance

= Flat frequency response in 0-1 MHz range E. Hershkovitz, M. Marchevsky, M. Turqueti
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~0.15mV
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Capture Date 2/18/2021
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Capture Rate
Saved with
FicoScope 6
i

 Extremely low noise (< 1 nV/VHz at 1 MHz),

Waveguide Sy ihL ¢ uniform performance 300 K-> 4.2 K
acoustic sensors based on GaAs FETs Diff. op-am « Ultra wide bandwidth, limited by the piezo-
P P
(gain 100) transducer Single-ended and differential

amplification possible

Universal tap” board: two . 50 Q output

acoustic amplifiers
combined with a differential
amplifier based on SiGe
technology

= Simultaneous measurement of differential voltages and acoustic emissions can be achieved with a single pair of taps

M. Marchevsky
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CMOS camera chip with integrated lens

Thermometer I |£
| Camera chip

temperature
was held at * CCT3 magnet quenching at ~11 kA
-30C * One can hear the quench occurring in the magnet
Heater/ — \ (b:lils;;ng sound) followed by a slight increase in
// Acrylic window e ~2 s later helium bath comes to violent boiling and
Aerogel insulation liquid is propelled upwards along the bore tube.

M. Marchevsky
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ol ;%C:;ﬂ% o

Aerogel blankets

Silicone sealant

. PC board
o

O

o ] Flexible

@

o heater

- G10
enclosure

* Two 8-channel DG407 analog multiplexers are commutating 16 differential inputs to a gain x50 amplifier built using ICL7611 op-amp.

* Reliable operation has been confirmed down to 30 K, with switching rates up to 60 kHz/ch limited by the performance of control

software. At lower temperatures the DG407 ICs were no longer responding to control voltages, but the operation restored back to
normal at above 30 K.

* To extend low-temperature functionality, the board was sandwiched with a flexible Kapton sheet incorporating a 50-micon thick
stainless heater (R = 9 Q) and two Aerogel blankets inside a G10 box enclosure. With only 0.3 A dc current in the heater the board
temperature can be raised above 30 K without having any notable impact on the helium boil-off rate

M. Marchevsky
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Hall sensor

Op-amp 27 K

sp (MV)

e
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Can drive up to 50 A (room temp, over 100 A expected in LN2)

* Used for quench detection and protection, imaging studies
with HTS conductors

M. Marchevsky
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* Synergistic approach to data acquisition and pre-processing. Combining
various magnet sensors together with real-time digitizer and pre-processors.
A cryogenic magnet “neural system”.

* Integration with magnet, structural elements and cryogenic infrastructure.
”"Smart” terminals, functional supports, etc.

* Cross-integration with other technologies (optical fibers, RF)
* Cryo-electronics status changes from being a “novelty” in magnet diagnostics

to becoming a mainstream approach, essential part of future magnet
diagnostic systems.
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