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ITS3 details

truly cylindrical
detection layers

Beam pipe Inner/Outer Radius (mm) 16.0/16.5

IB Layer Parameters Layer O Layer 1 Layer 2
Radial position (mm) 18.0 24.0 30.0
Length (sensitive area) (mm) 300

Pseudo-rapidity coverage +2.5 +2.3 +2.0
Active area (cm?) 610 816 1016
Pixel sensor dimensions (mm?) 280 x 56.5 280 x 75.5 280 x 94
Number of sensors per layer 2

Pixel size (um?) O (10 x 10)
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> Key ingredients:

300 mm wafer-scale sensors, fabricated
using stitching

thinned down to 20-40 um

(0.02-0.04% Xo), making them flexible

bent to the target radi

mechanically held in place by carbon
foam ribs

> Key benefits:

extremely low material budget:
0.02-0.04% Xo
(beampipe: 500 pm Be: 0.14% Xo)

homogeneous material distribution:
negligible systematic error from material
distribution

The whole detector will consist of six (!) sensors (current ITS IB: 432) — and barely anything else
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MLR: multiple layer per reticle, ER: engineering run,

BM: breadboard module, EM: engineering module, QM: qualification module, FM: final module

|' Long Shutdown 3 (LS3) |




Beam test of bend MAPS

A series of beam tests was performed in 2020 and 2021
Jun 2020 (DESY): first bent chip

Aug 2020 (DESY): bent chip on cylinder

Dec 2020 (DESY): bent chip at large radi

Apr 2021 (DESY): bent chips at all radii, carbon foam
Jul 2021 (SPS): pITS3, “W”

Sep 2021 (DESY): MLR1, “W?”, carbon foam
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Beam test: bent chip testing 1st paper: arxiv:2105.13000
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Fig. 10: Inefficiency as a function of threshold for different rows and incident angles with partially

logarithmic scale (10~! to 107°) to show fully efficient rows. Each data point corresponds to at least
8k tracks.

(a) Bent ALPIDE chip on the carrier card (b) Testbeam telescope

sensors maintain their excellent performance after bending, with detection efficiencies above 99.9 %
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Beam test: bent chip on cylinder

> Very interesting geometries are
becoming possible -

> For instance, one can observe two
crossings of the same particle

double-crossing grazing
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Beam test: yITS3 setup

» uITS3, i.e. 6 ALPIDEs at ITS3 radii

- two complete setups based on “gold” quality
ALPIDE chips

- one has a Cu target in the center: expect to see
120 GeV proton/pion-Cu collisions

» Several days of continuous data taking
- detailed analysis ongoing

Lp\,1.16mm .

First “real” experiment, allows to study tracking/reconstruction



Beam test: yITS3 setup
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First “real” experiment, allows to study tracking/reconstruction




Beam test: material budget studies (carbon foam)

» A sandwich of chip-foam-chip was brought to beam
» Scattering angle due to carbon foam is measured

> Very small (but visible) effect, as expected

y [mm]

Gives confidence in system-level Xo numbers, tests now done routinely for glueing optimisation
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Sensor R&D
65 nm prototypes, MLR1

< ~12 mm >

» First submission in Towerdazz 65nm

- scoped within CERN EP R&D WP1.2
| ] - significant drive from ITS3
SR N - + important contributions from outside

i

(T .
)T

(not ALICE) groups

3 === B . Contained several test chips
| PELS E=8 _ radiation test structures
B St - Pixel test structures

L il - pixel matrices

- analog building blocks (band gaps,
) LVDS drivers, etc)
W vVery versatile first submis

iIssion, combining what was initially planned for 2 MPWs
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Sensor R&D
65 nm prototypes, MLR1

transistor test structures

» Compatible with existing test system based on probe card
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> Tests have already started

- no apparent showstoppers so far
- detalled anaIyS|s ongomg and in discussion with foundry
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Very encouraging results, clears first milestone of 65 nm verification
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Sensor R&D
65 nm prototypes, MLR1

Digital Pixel Test Structure (DPTS)
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» 32 X 32 pixels, 15 ym pitch

- sizeable prototype, allows for “easy” test
beam integration
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> Asynchronous digital readout with ToT
information

> Allows to verify:
- sensor performance
front-end performance
basic digital building blocks
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Sensor R&D

- ~ A - Gl

First beam test - /\\xy.stage —
NNy
Telescope with DPTS WA RE S\ ‘ .
3 ALPIDE 2 DPTS i.3 ALPIDE &J -
. . |' scintilator

> Scintillator with Tmm hole can , ’ el ALA ‘with 1mm hole

be used to trigger on narrow ; — -

beam spot P

> 6 precision linear stages with
remote control allow to precisely
align 2 DTPS and scintillators

1 PMT

3 ALPIDE 2 DPTS@3 ALPIDEg1 PMTj1 PMT
(ref) (DUT) (ref) o) HEIL))

(trg)
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Schematic setup

ALPIDE (reference planes)
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Schematic setup

ALPIDE (reference planes)

1.5x1.5 mm
(active: 0.48x0.48 mm)
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Schematic setup

ALPIDE (reference planes)

1.5x1.5 mm
(active: 0.48x0.48 mm)
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Schematic setu

Scintillator (veto)




Track intercept in y (um)

DPTS beam test results

Reconstructed telescope tracks, on DTPS D plane

T
ITS3 beam test preliminary o’
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Track intercept in x (um)
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> Beam spot and trigger tuned to
Illuminate a small area



Track intercept in y (um)

DPTS beam test results

Reconstructed telescope tracks, on DTPS D plane

T
ITS3 beam test preliminary o’
@DESY Sep, 2021, 5.4 GeV/c e?ectrons -
600 1 run: 366153736, 210911181006 S o o
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Track intercept in x (um)

DPTS D
wafer: 22
chip: 1
version: 1
split: 4 (opt.)
Vowenn = — 1.2V
Vep= —1.2V
Ireset = 10 pA
Ipias = 100 NA
Ipiasn = 10 nA
lap = 100 nA
Vcasn = 300mV
Vieasp =250 mV
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> Beam spot and trigger tuned to
Illuminate a small area

> Looking at tracks without hit in the
DPTS, a clear 100% shadow is seen



Track intercept in y (um)

DPTS beam test results

Reconstructed telescope tracks, on DIPS D plane
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Track intercept in y (um)

DPTS beam test results

Reconstructed telescope tracks, on DTPS E plane
4 DPTS E

ITS3 beam test preliminary o o o water; 22
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L ° pwe .
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Ibiasn = 10 nA
lap = 100 nA

wmv > LOOKING at tracks without hit in the
DPTS, a clear 100% shadow is seen

> The area matches precisely the
DPTS

> 166/166 tracks in region of interest
- similar for second chip (162/162)
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Track intercept in y (um)

DPTS beam test results

Reconstructed telescope tracks, on plane between 2 DIPS sensors
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Outlook

o Many parallel activities in progress.

o Test on APTS (analog pixel test structures): functional but noise issue in measurement setup.

o 2 more test beams for MLR1 in 2021:
-CERN SPS 10-15 November
-DESY 29 November — 6 December

o Shall start preparation of ER1 tests soon
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Laver interconnection “super-ALPIDE”

> To study the bending and interconnection of large
pieces of processed chips, “super-ALPIDE” is built

- comprises of 1 silicon piece cut from an ALPIDE
wafer (9x2 dies, approx 1/2 of layer 0)

25



Towards a wafer-scale sensor
ER1

.’-----..
v — -

'

M - - - - - - - - - - ]

> Next big milestone in sensor design: stitching

> Design activity at full swing
- building blocks are defined and work is distributed

- builds on very encouraging, silicon-proven, feedback from
MLR1
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Last crucial ingredient for the TDR




Chips for ER1: to be updated and mapped into floorplan

# of test sites Comments

Purpose

Institute

MOSS

MOST

H2M
CE65++

SEU chips

PLL NIKHEF
PLL+buffer
Pixel test DESY
Pixel test SLAC
APTS

DPTS

TTS1-5

ADC prototype

stitched sensor prototype develop stitching know-how, more conservative
Focus on technology options, power distribution, signal routing, yield
Stitched sensor prototype, develop stitching know-how, more aggressive
Study yield with high density layout parts and fine power segmentaton
Low power and transmission of timing information over long distance
Hybrid to Monolithic

Investigate MAPS and architectures in non-stitched sensor

Pixel optimization vehicle

Focus on optimizing pixels and front-end

Prototype with memories and flops

Measure SEE cross-sections (SEL, SEU)

First step in high speed transmitter
First step in high speed transmitter
Pixel sensor and front end prototype
Pixel matrix prototype

Analog pixel test structure

Digital pixel test structure

Transistor test structures

Desired function

Supply regulation Desired function

INFN, IPHC, NIKHEF,

CERN
NIKHEF, IPHC,

Heidelberg, CERN, INFN

DESY and CERN

IPHC

INFN Bari

NIKHEF

RAL

DESY

SLAC

IPHC and CERN

CERN

CERN

not covered

not covered
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tbd

tbd

tbd

10

1D stitching
Matrix as simple as possible

Many parts in common with MOSS

High speed transmission

High speed transmission

generated from DAC ?

Interest from several corners



Backup
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Mechanics and bending test

> Monolithic Active Pixel Sensors are
quite flexible

- already at thicknesses that are used
for current detectors

> Bending force scales as (thickness)-3
- large benefit from thinner sensors

> Breakage at smaller radii for thinner
chips

- again benefit from thinner sensors

> Our target values are very feasible!
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Mechanics and bending test

O ¢ ¢
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R=18 mmjig




Assembly test

> Detailed analysis of the impact of the carbon foam support wedges
- local deformations of <100 pm

> 3D X-ray of the full assembly: very good agreement

Tomography VS CAD model

Very good results, details to be added to MC
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Assembly test : Cooling

> Preliminary test has been performed for a Breadboard model equipped with
heaters to simulate heat in the layer O, no carbon foam

T

air_outlet

Tair_inlet= 23°C

Air flow

)

Breadboard model,

Poeriphery=2+ 1W

=0.9W
e — p—

matrix

Very important input for the further design optimisation
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High temperature at the sensor
periphery confirm the need of a
radiator (carbon foam ring) to
dissipate the heat



Assembly test: Optimization of glueing

Carbon foam wedge:

ERG Duocel y

[0.06 kg/dm?3)] A _ ..
Carbon fleece - First assembly has shown glue penetration in the
[8g/m?’] = . carbon foam by capillarity

Glue: Araldite 2011 |
" Glue Silicon
Fleece

Supporting base

Pre-curing steps of
fleece + glue

-

Silicon Interface

To minimise glue

ERG Duocel penetration

Helps to really put the material budget down as much as possible
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