

Canada's national laboratory for particle and nuclear physics and accelerator-based science

Douglas W. Storey Toohig Fellowship Candidate

Joint LARP CM28/HiLumi Meeting April 24, 2017

Overview of Research Background

Development of beam diagnostics systems

- Developed the view screen beam profile monitors for ARIEL eLinac
 - Uses scintillator and OTR screens
- Compton polarimeter for Qweak experiment at Jlab – (during BSc)

Development of electron source

- Developed a ceramic waveguide for a RF modulated DC electron gun
 - Transmits 100 W RF power across 300kV DC gap
 - Optimized geometry via RF simulations
 - Performed measurements on bench and after installation

Overview of Research Background

Commissioning of eLinac systems

- Electron diagnostics systems
 - Low power commissioning of view screens
 - High power beam tests in coming months
- 1.3 GHz cavity systems
 - Investigated energy and phase instabilities

SC Linac Operations

- Operation of ISAC 40MV SRF linac
 - 40 quarter wave resonator cavities
- Provide SRF expert support
 - On call 24hr/day operations support

SRF Activities

- Some main SRF activities I have been involved with:
 - Operations and commissioning of SRF systems
 - 2K and 4K vertical cavity tests
 - QWR, 1.3 GHz cavities
 - Cavity processing
 - BCP, HPWR, assembly
 - Tuning, beadpull measurements
 - Fundamental studies of SRF materials using μSR
 - SRF cavity development
 - This has been the main focus of PhD

PhD Research – Development of an RF Deflecting Cavity

- 30 50 MeV, 10mA CW driver for rare isotope beam production
- Will be upgraded with a recirculation loop to operate as an ERL
 - Simultaneous beam delivery to RIB production and ERL requires RF separation

Doug Storey - April 24, 2017

ETRIUMF

SRF Cavity Design

Cavity performance parameters:

Superconducting Niobium cavity at 4.2 K

Resonant frequency: 650 MHz

Deflecting voltage: 0.3 (0.6) MV

Shunt impedance: 625Ω

Geometry factor: 99 Ω

Peak electric field: 9.5 (19) MV/m

Peak magnetic field: 12 (24) mT

RF power dissipation: 0.35 (1.4) W

 Geometry modified from RFD design for higher shunt impedance, shorter length

Operating freq.

Temp

 $L_{c\underline{av}}$

 $\lambda/2$

Max width

 $\lambda/2$

Aperture

 $\lambda/2$

 $R_{\perp}R_{s}$

Operating V_1

 E_p at 0.3MV

 B_n at 0.3MV

Doug Storey - April 24, 2017

TRIUMF

650

4.2

0.76

0.88

0.22

6.2×10⁴

0.3 - 0.6

9.5

12

[1] International Review of the Crab Cavity Performance for HiLumi, April 3-5 2017

Comparison to other crab & deflecting cavities LHC RFD¹

400

1.5

0.75

0.22

 4.6×10^{4}

3.4

2.9

4.9

LHC QWR¹

400

1.3

0.78

0.22

 3.7×10^{4}

3.4

3.3

6.4

[2] WEPW0056, IPAC2013

UK 4R²

400

1.3

0.76

0.22

5.8×10⁴

3.4

3.2

6.1

[3] THXM02, EPAC08

KEK Crab³

509

2.8

0.9*

2.9

0.63

 1.0×10^4

2.8

4.3

12

[4] MOP12, LINAC96

Jlab 4Rod⁴

499

300

0.92

0.97

0.05

1.2×10⁶

< 0.6

Cornell ERL

Deflector⁵

1300

300

0.95

2

0.3

 9.9×10^{4}

< 0.05

[5] WEPMS004, PAC07

MHz

K

 Ω^2

MV

MV/m

mT

- HOM coupler with 650 MHz filter
 - Transfers HOM power to an external load
- Resistive beam pipe damper
 - Cooled by liquid nitrogen

HOM Damping Simulations

- Simulations performed in HFSS, confirmed using ACE3P
- Deflecting modes
 - All modes sufficiently damped
 - Limiting process is multipass BBU
- Longitudinal modes
 - Most modes far from resonant frequency
 - Even on resonance, minimal power dissipated
- Total power dissipation
 - Majority of power is damped by the HOM damper
 - < 1 W through HOM coupler
 - < 1 mW on beam pipe damper

Multipacting Analysis

- Cavity analyzed for multipacting using TRACK3P
- Similar impact energy response as RFD and DQW cavities
 - Experience at ODU, BNL, and CERN suggest MP seen at low voltage may be processed with relative ease
 - S.U. De Silva and J.R. Delayen, PRST-AB **16**, 082001 (2013)
 - B. Xiao, et. al., PRST-AB **18**, 041004 (2015)

- Ridges machined from solid Niobium, 3mm wall on body
 - Decreases pressure sensitivity to ~ 1 Hz/mbar
 - Minimal temperature rise of ridge: $\Delta T < 0.1$ K

Cavity Deformation:

Thermal Response at 0.6MV:

- Low performance requirements of cavity allow for development of non-standard fabrication methods
 - Machining from bulk reactor grade Niobium
 - Lower purity than standard SRF cavity material
 - RRR of 45 compared to usual ~300

Copper Prototype Studies

- Copper cavity fabricated to test fabrication steps
- Bead pull measurements of operating and HOMs

Characterization of TIG Welding

- Cavity is being fabricated in house
- Welded in an ultrapure Argon filled glove box
- TIG weld studies performed:
 - O2 < 10ppm results in minimal degradation of welds</p>
 - RRR dropped from 45 to 41 after weld

ETRIUMF

Summary of PhD Work

- A deflecting mode cavity has been designed with:
 - High shunt impedance
 - Small transverse and longitudinal dimensions
 - Good HOM properties
- In-house fabrication has commenced using:

Doug Storey - April 24, 2017

- Beam tests of crab cavities in SPS:
 - Beam based measurements of beam loading and HOM response of cavities
 - Effectiveness of HOM couplers
 - Determine the impact of the HOMs on beam properties
 - Quantifying effects of crab cavities on the beam
 - Impact on beam halo
 - How to minimise effects of cavities when offline or tripped
 - Stability of the system online
 - Preparation of cryomodules for crab cavities
- Looking forward to learning about other opportunities within the collaboration!

LARP

Toohig Fellowships
Accelerator Science at the Li

Canada's national laboratory for particle and nuclear physics and accelerator-based science

TRIUMF: Alberta | British Columbia | Calgary |
Carleton | Guelph | Manitoba | McGill | McMaster |
Montréal | Northern British Columbia | Queen's |
Regina | Saint Mary's | Simon Fraser | Toronto |
Victoria | Western | Winnipeg | York

- Development of TIG welding procedures
 - Building on work started by Chris Compton at MSU:
 - C. Compton, et. al., WEP01, SRF2007

• Full penetration welds:

• Heat affected zone (HAZ) of ~12mm

Why a Superconducting Cavity?

- Normal conducting cavity options
 - Looked into copper 4Rod and RF Dipole options
 - Normal conducting 4Rod specs:

Resonant frequency: 650 MHz

Deflecting voltage: 0.3 (0.6) MV

Shunt impedance: 917 Ω Geometry factor: 79 Ω

 $R_{\perp}R_{\rm s}$: $7.2 \times 10^4 \,\Omega^2$

RF power dissipation: 8.3 (33) kW

Peak local dissipation: >100 W/cm²

- Main issue is the shunt impedance vs. aperture
 - S. U. De Silva and J. R. Delayen, PRST-AB 16, 012004 (2013)

HOM Coupler Design

- Coaxial antenna
 - 50Ω transmission to room temperature load
 - 24mm OD, 6mm ID
 - Kyocera N-type feedthrough

- $Q_{ext} > 10^{11}$ and < 1 mW extracted from operating mode
 - $S_{21} < 40$ dB for 650 ± 40 MHz
- Tuning of notch filter will be completed before assembly

- Coaxial input coupler on end of cavity
 - 24 mm OD, 50Ω fixed coupling $-Q_{ext} = 3 \times 10^6$
 - Dynamic power loss on tip of < 2 W
 - Max temperature of tip ~ 85-100 K

Radiative heat transfer to cavity < 1 mW

Steady State Input Power

- Active beam loading is for electrons passing off axis at the zero-crossing phase
 - i.e. the recirculated beam
- For optimal coupling: $Q_{ext} = 3 \times 10^6$
 - $P_g = 15$ W with no beam loading or microphonics detuning
 - Can reach cavity voltage with $P_g < 200 \mathrm{W}$ for 20mA and $\Delta x < 2$ mm and $\Delta f < 100~\mathrm{Hz}$

