

MDP Diagnostics Update (M3)

Time-Frequency Domain Reflectometry for Quench Detection

Geon Seok Lee
Lawrence Berkeley National Laboratory

Presentation to US MDP General Meeting
Oct 27, 2021

DEVELOPMENT Applicability of reflectometry to magnets

Electrical Signal Acoustic Signal

- Detection technique based on the reflection of waves at the discontinuity
- Electrical signal: Apply reference signal to two voltage lines with <u>insulation</u>
- Acoustic signal: Apply reference signal in the wave guide
- How do we apply reflectometry to the magnet?
 - 1. Additional wires with conductors
 - 2. Magnet mandrel (pipe)
 - 3. Conductor (tape/bar)
- Quench detection and localization
 - Crack, thermal load, thermal expansion ...

	Cers and 131 dipole
Allid-M3	Development and test of a linear quench localization sensor on a Bi-2212 subscale and/or ReBCO CCT series

Guided wave propagation in REBCO tape (ANSYS)

- SH (Shear-Horizontal) mode
- The chirp signal is easy for localization. (compared to step and sinusoidal)
 - Time-frequency domain reflectometry (TFDR)

Result of Step pulse

DEVELOPMENT Fault detection and localization PROGRAM

2G HTS REBCO (SuperPower)

Sensors for Reference

- Length: 1.2 m
- Signal Design
 - BW, CF = 0.2 MHz
 - TD = 20 us

- Local change of HTS tape affects the acoustic wave propagation (Quench detection)
- Improvement is required for quench localization (hot spot)
 - Amplifiers, connector, new experimental setups

DEVELOPMENT Present and Future Plans PROGRAM

- Currently, amplifier is used only for measurement signals.
 - Changing the input voltage from 5V to 200V
- It is expected that the piezo sensor operation will be improved even at cryogenic temperature.
- Low temperature Elasticity of *Dysprosium*
 - Exhibits typical anomalies at specific temperature (87 K)
 - Tried with Foil type, but HTS tape will be covered with epoxy in powder in the next time.

• TFDR utilizing acoustic sensor can localize the mechanical failures for HTS tapes and cables (pipe), but improvement is still required to localize hot spots (thermal change).

