

US Magnet Development Program

Current status of a shell-based utility structure

Mariusz Juchno US Magnet Development Program Lawrence Berkeley National Laboratory

The goal

- Shell-based Utility Structure
 - Pre-stress for ~17T operation (Nominal 16T, design target 17T)
 - Tunable via key shimming
 - Peak stress of 180 (?) MPa (150 MPa assembly)
 - Requirement on pole separation or tensile stress
 - Rapid and reproducible assembly/disassembly
 - Compatible with existing 4-layer Cos-theta coil design
 - $\circ~$ Adjustable to variety of coil designs with minimum modifications
- Design limits and sensitivity
 - Magnet outer diameter
 - $\circ~$ Coil design compatibility and combined mechanical/magnetic design
 - **o** Sensitivity of mechanical performance
 - Dimensions, tolerances, friction, etc.

Current 4-layer Cos-theta coil

Coil field 15.88 14.88 12.70 12.80 12.80 11.70 87% SSL 11.16 9.407 8.407 7.706 9.917 8.9148 8.9148 100% SSL 8 10 20 30 48 56 88 70 80 80 100

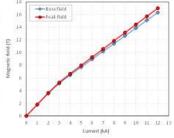
TABLE III. NORMAL RELATIVE HARMONICS (10⁻⁴ OF THE DIPOLE COMPONENT)

Hatmonic	Value	
bi	0.0018	
bi	0.0154	
b ₂	0.0523	
by	0.0612	

7 V.V. Kashikhin | Coll design studies, magnetic design and QP analysis

‡Fermilab 4/28/2016

Cable parameters


Strand diameter	mm	1.000	0.700	
Number of strands		28 40		
Strand J _c (12T, 4.2K)	A/mm ²	2850	2650	
Cu/non-Cu ratio		1.13		
Bare mid-thickness*	mm	1.870	1.319	
Bare width'	mm	15.10		
Radial insulation thickness	mm	0.150		
Azimuthal insulation thickness	mm	0.125		
Keystoning angle	deg	0.804		
*After reaction				

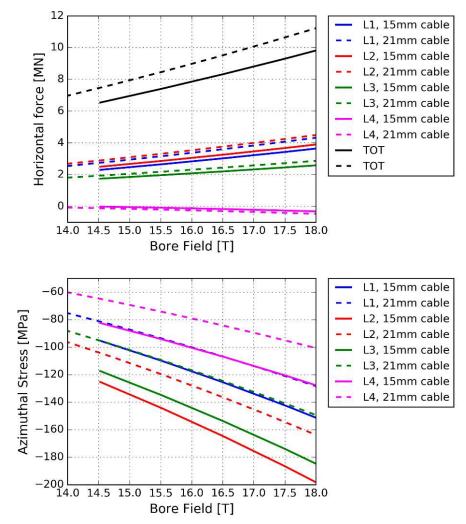
V.V. Kashikhin | Coll design studies, magnetic design and QP analysis 3

-	4	Fe	rm	nil	ab
4/28/2016					

Magnet parameters

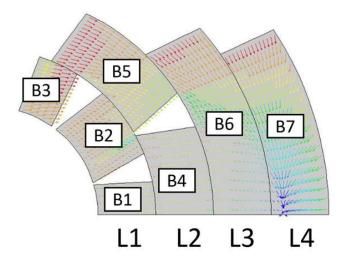
			18
Peak bore field at 4.2 K	Т	15.61	14
Peak coil field at 4.2 K	Т	16.25	F 11
Peak current at 4.2 K, Ie	kA.	11.34	Plag 10
Inductance at Ic	mH/m	25.61	a greatk
Stored energy at Ic	MJ/m	1.65	g 6
Horizontal Lorentz force per quadrant at Ic	MN/m	7.36	4
Vertical Lorentz force per quadrant at I,	MN/m	-4.50	0

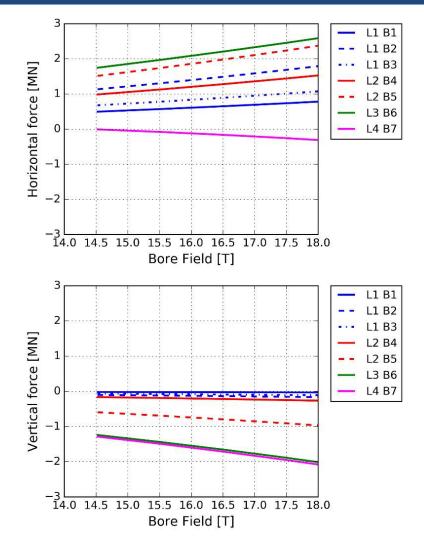
V.V. Kashikhin | Coll design studies, magnetic design and QP analysis 9



Magnetic forces vs cable width

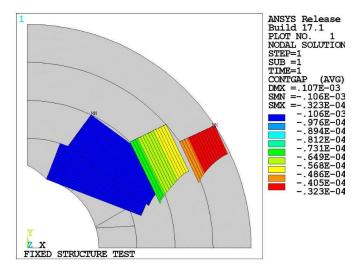
- Quantities
 - Horizontal magnetic force
 - Azimuthal stress on the mid-plane based purely on magnetic force accumulation and cable width
- Cable width
 - 15.10 mm (solid line)
 - o 21.13 mm (dashed line)
 - Coil ID fixed
 - Only radial coil dimensions changed
 - Azimuthal coordinates of each block are not changed
 - Number of turns not changed
 - Bigger coil not optimized
- What do we get
 - L2 shows higher stress than L1?
 - High azimuthal stress in L3?
 - Wider tape seems to reduce stress by <30MPa ?
- What we are missing
 - o Layers impregnated together
 - Friction between coils
 - o Coil deformation and bending
 - Horizontal force accumulation
 - Structure...

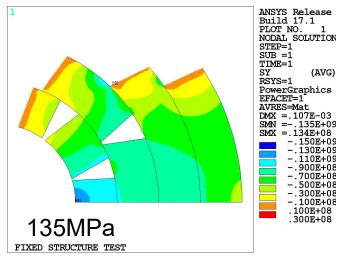




Forces per block 15.1 mm cable

- In the coil L1+L2 block B5 shows highest vertical force and contributes to a high peak stress in block B1
- L1+L2 compress L3+L4 against structure and high vertical force in L3+L4 does not deform the coil and stress is not high

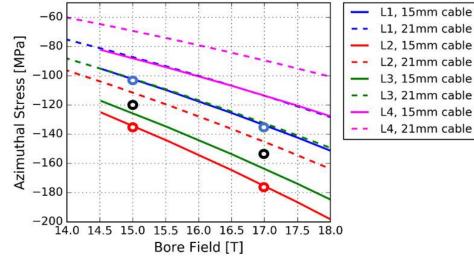


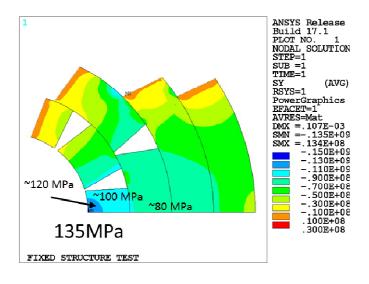


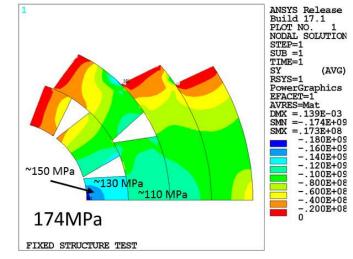
Fixed structure No pre-load

• Structure and poles infinitely rigid with fixed displacement

- Not contracting due to cool-down
- \circ Contact with friction
- Coil not bonded to the pole
 - Not contracting due to cool-down
 - Properties for 4.3K
 - Layers 1&2 bonded together
 - Layers 3&4 bonded together
 - Layers 2&3 in contact with friction
- Conclusions
 - Stress concentration in mid-plane of layer 1
 - 135 MPa at 15 T
 - 174 MPa at 17 T
 - Stress in layers 2-4 < 90MPa contrary to magnetic analysis estimate
 - Bonded coils
 - Interaction between layers and structure

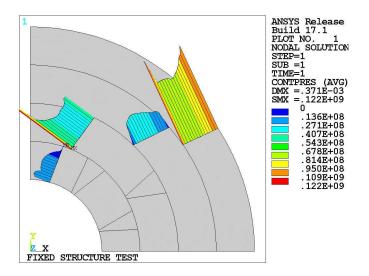


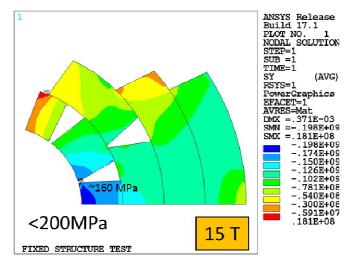




Fixed structure, No pre-load Comparison with previous estimation

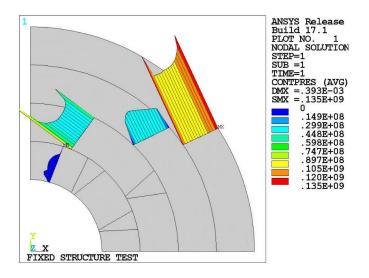
- L1 and L2 potted
 - Average stress in 1st block similar to average stress from L1 and L2 magnetic forces
- Peak stress ~20MPa higher due to bending
- 17T shows stress ~30MPa higher than 15T
 - Requires ~30MPa more pre-load at CD and MF

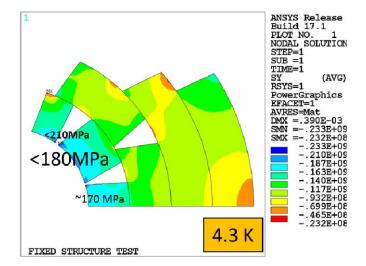


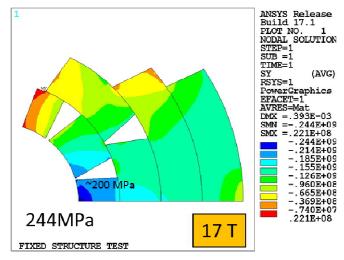


Fixed structure Pre-load for 15 T

- Rigid structure
 - Shrinkage modeled by contact element offset (-365um)
 - \circ $\,$ $\,$ Structure does not deform due to MF $\,$
- Coil and pole shrink during cool-down
- Coil can separate from the pole
- Horizontal magnetic force: 7 MN/m
- Total pole reaction force at cool-down: -8.7 $\ensuremath{\mathsf{MN/m}}$
- Reaction force in each pole at 15T:
 - \circ -0.3, -0.8, -1.6, -1.5 MN/m

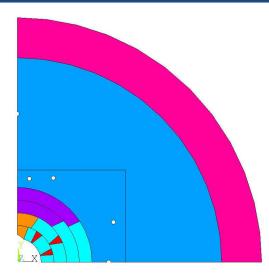


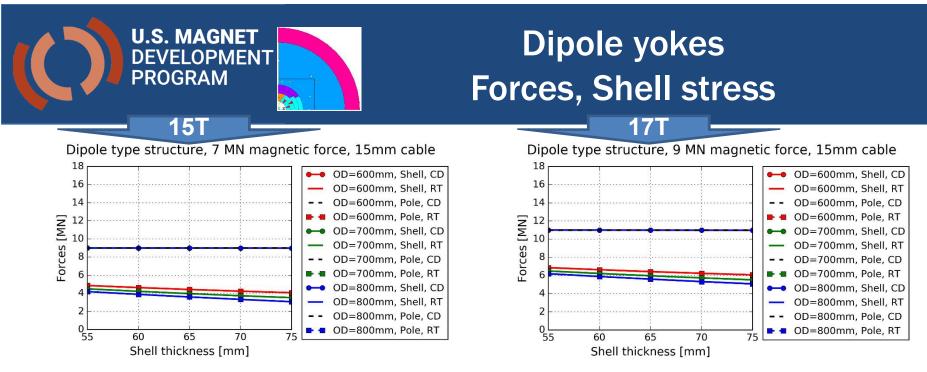




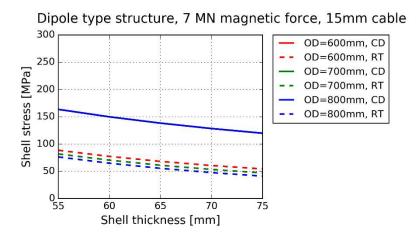
Fixed structure Pre-load for 17 T

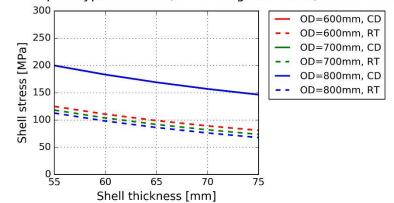
- Rigid structure
 - Shrinkage modeled by contact element offset (-385um)
 - \circ $\,$ $\,$ Structure does not deform due to MF $\,$
- Coil and pole shrink during cool-down
- Coil can separate from the pole
- Horizontal magnetic force: 9 MN/m
- Total pole reaction force at cool-down: -10.7 $\ensuremath{\mathsf{MN}/\mathsf{m}}$
- Reaction force in each pole at 17T:
 - \circ -0.2, -0.8, -2.0, -1.6 MN/m




Exploration of shell parameters

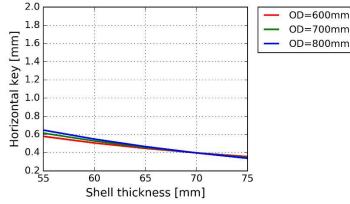
- Two types of yoke configurations investigated
 - o Dipole yokes
 - Quad yokes
- Shell parameter space
 - **OD range: 600-800 mm**
 - TH range: 55-75 mm
- Pre-load target
 - Pole reaction force 2MN/m higher than magnetic forces
 - Adjusted using key shim
- Quantities
 - Shell and pole reaction forces (RT, CD)
 - Shell stress
 - $\circ~$ Pre-load key shim
 - o Bladder pressure
 - Dipole yokes bladder surface D/2
 - Quad yokes bladder surface 0.7D/2





RT key adjusted to the same pre-load after cool-down (2MN/m more than magnetic forces) Reaction force in the shell equal to the reaction force in the pole

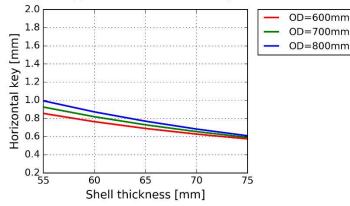
Dipole type structure, 9 MN magnetic force, 15mm cable



Dipole yokes Horizontal key, bladder pressure

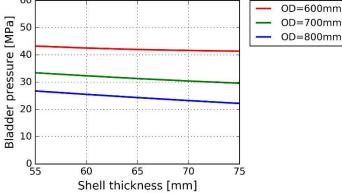
171

Dipole type structure, 7 MN magnetic force, 15mm cable

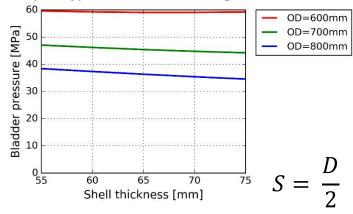

U.S. MAGNET

PROGRAM

15T

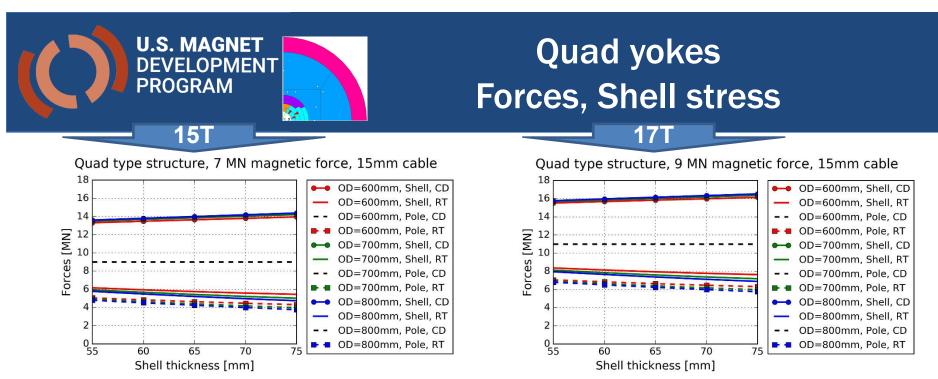

DEVELOPMENT

Dipole type structure, 9 MN magnetic force, 15mm cable

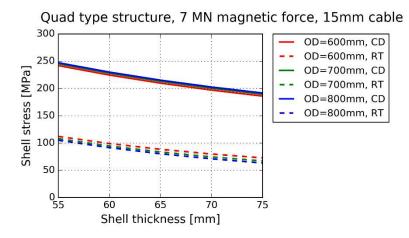


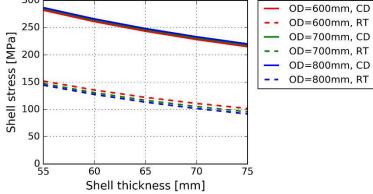
RT key adjusted required to reach the pre-load Only half of diameter used for the bladders

Dipole type structure, 7 MN magnetic force, 15mm cable



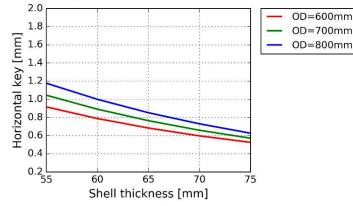
Dipole type structure, 9 MN magnetic force, 15mm cable



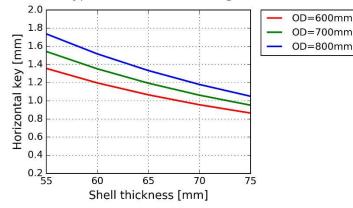


RT key adjusted to the same pre-load after cool-down (2MN/m more than magnetic forces) Reaction force in the shell higher due to pre-load locked by the top/bottom yoke

Quad type structure, 9 MN magnetic force, 15mm cable

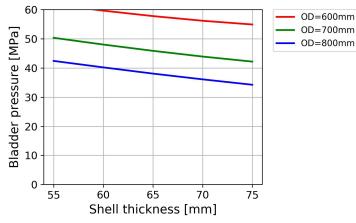


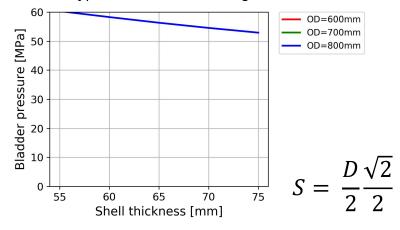
U.S. MAGNET Quad yokes DEVELOPMENT Horizontal key, bladder pressure


Quad type structure, 7 MN magnetic force, 15mm cable

PROGRAM

15T


Quad type structure, 9 MN magnetic force, 15mm cable


171

Thicker shim required due to intercepted force Usable bladder space smaller than in dipole yokes structure

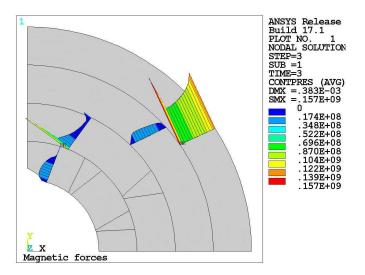
Quad type structure, 7 MN magnetic force, 15mm cable

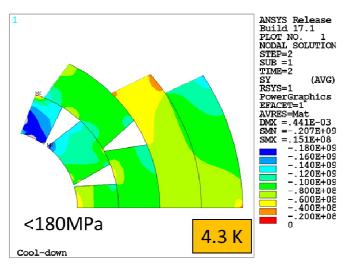
Quad type structure, 9 MN magnetic force, 15mm cable

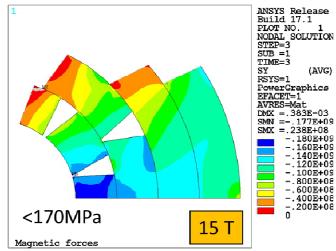
Summary Other structure types

- Dipole yokes
 - Sufficient bladder space
 - \circ $\,$ Full reaction force from the shell goes to coil pre-load $\,$
 - \circ ~ Vertical corner keys increase stress in the structure
 - $\circ\quad \text{Low number of components}$
 - \circ Adjustment with 2 key types
- Quad yokes
 - o Limited bladder space, bladders less efficient
 - **o** Top/bottom yoke limits vertical and intercepts part of the pre-load
 - \circ $\;$ Vertical corner keys increase stress in the structure
 - $\circ \quad \mbox{Quad yokes assembly} \quad$
 - Adjustment with 2 key types
- Dipole yokes, quad pads
 - Sufficient bladder space
 - \circ $\,$ Top/bottom pad limits vertical and intercepts part of the pre-load
 - Vertical corner keys increase stress in the structure
 - Simple yoke assembly, more components in the coil-pack, bigger OD required
 - Adjustment with 2 key types

- Dipole yokes, octagonal coil-pack
 - Sufficient bladder space, diagonal bladders less efficient but increase total surface
 - \circ $\,$ Full reaction force from the shell goes to coil pre-load $\,$
 - \circ $\,$ $\,$ Force transfer radially, low stress in the structure
 - Low number of components
 - Adjustment with 3 key types

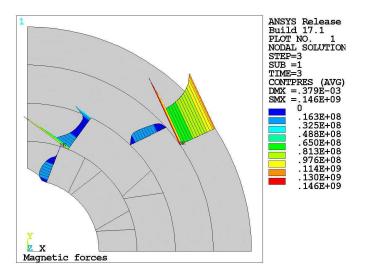


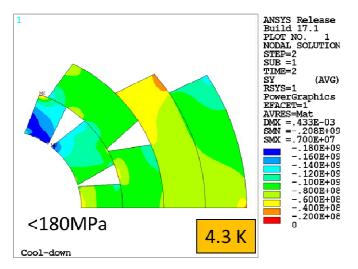


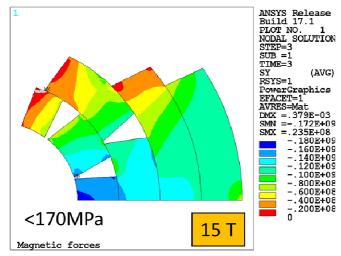


Shell based structure – example 1 Dipole yokes

- Structure configuration:
 - o 2 yokes (iron)
 - o 2 "collars" (iron)
- Shell OD/TH: 610/55 mm
- Hor. Mag. forces at 15T: 6.7MN/m
- Shell force at CD: 8.7 MN/m
- Pole force at CD: 8.7MN/m
- Pole force at 15T: 2.0 MN/m

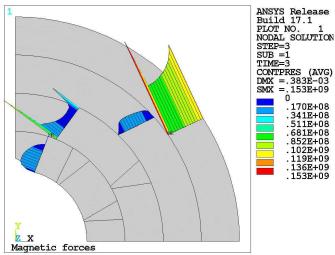


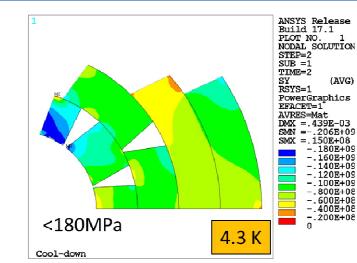


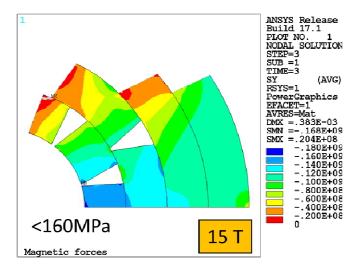


Shell based structure – example 2 Quad yokes

- Structure configuration:
 - o 4 yokes (iron)
 - o 2 "collars" (iron)
- Shell OD/TH: 610/55 mm 🧖
- Hor. Mag. forces at 15T: 6.7MN/m
- Shell force at CD: 12.4 MN/m
- Pole force at CD: 8.4 MN/m
- Pole force at 15T: 2.1 MN/m

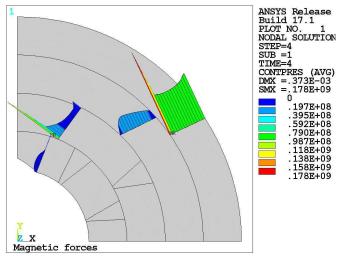


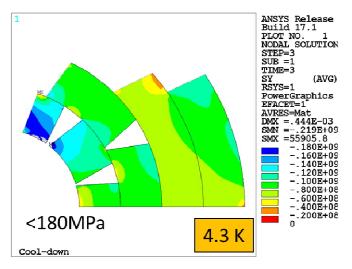


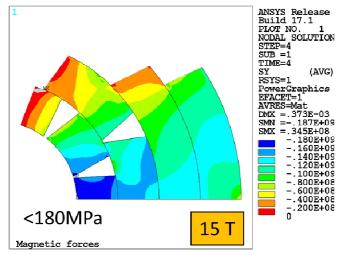


Shell based structure – example 3 Dipole yokes, Quad pads

- Structure configuration:
 - o 2 yokes (iron)
 - o 4 pads (iron)
 - o 2 "collars" (iron)
- Shell OD/TH: 850/75 mm
- Hor. Mag. forces at 15T: 6.9MN/m
- Shell force at CD: 12.7 MN/m
- Pole force at CD: 8.5 MN/m
- Pole force at 15T: 2.3 MN/m

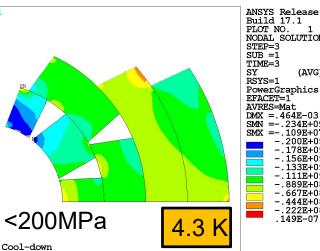


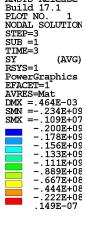


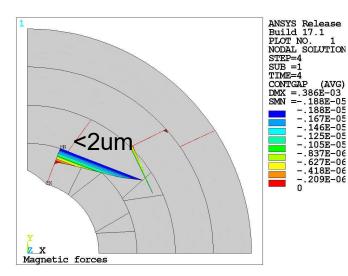


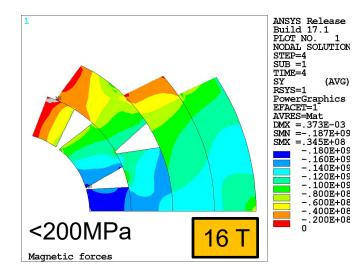
Shell based structure – example 4 Dipole yokes, Octagon coil-pack

- Structure configuration:
 - 2 yokes (iron)
 - o 2 "collars" (iron)
 - **Octagon coil-pack**
- Shell OD/TH: 750/47 mm
- Hor. Mag. forces at 15T: 7.0MN/m
- Shell force at CD: 8.7 MN/m
- Pole force at CD: 8.7 MN/m
- Pole force at 15T: 1.7 MN/m

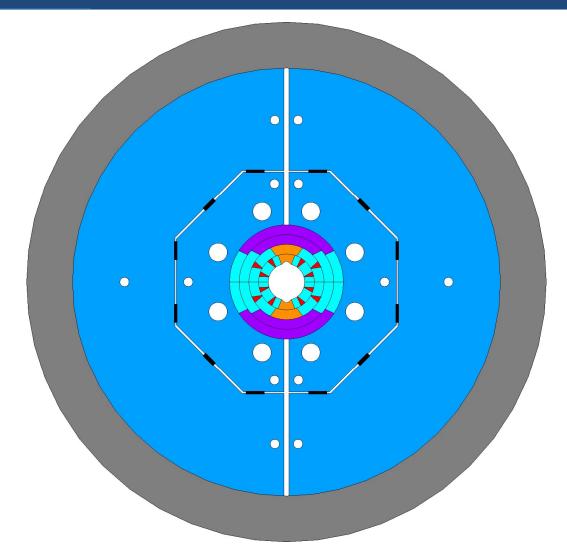





Structure concept optimized for 16T


- Shell OD: 730 mm, TH: 60 mm ۲
- Bladder pressure < 45 MPa ۲
- Coil stress < 80 MPa @ RT
- Structure stress
 - < 180 MPa @ RT 0
 - < 360 MPa @ CD & 16 T 0
- 17 T with stress ~230 MPa

Conclusions


- Integrated magnetic and mechanical design is crucial
 - Even simplified mechanical models with fixed OD pre-load can give a good overview of the coil stress limits
- Mechanical limitations of the coil design
 - $\circ~$ Wider cable might not solve the problem for CT
 - Stress management in CT coils is an interesting concept
 - Optimization of the coil blocks to minimize the peak stress
 - Other coil designs
- Utility structure
 - Minimum OD limited by space available for bladders (~700mm)
 - Dipole yoke type structures more efficient
 - Structure with octagonal coil-pack
 - Compatible with existing CT design (~180 MPa @ 15T after quick optimization)
 - Shlomo! Let's put CCT inside!
 - Minimum time for engineering design, procurement and parts fabrication
 - 6-8 months

Structure with octagonal coil-pack

