

CCT Progress Update

Diego Arbelaez, Lucas Brouwer, Shlomo Caspi, Dan Dietderich, Ray Hafalia, Scott Myers, Thomas Lipton, Maxim Marchevsky, Matt Reynolds, James Swanson, Marcos Turqueti, Xiaorong Wang, Soren Prestemon, Stephen Gourlay 04/19/2017

Outline

- CCT3/4 Basic Parameters
- Review of CCT3 Fabrication and Test Results
 - Test Results (Maxim Martchevskii)
 - Conductor (Dan Dietderich)
- CCT4 Progress Update

CCT 3/4 Parameters

- Tested and planned CCT 2-layer series has nearly identical geometry
 - o 90 mm diameter inner bore
 - o 1 m physical length
 - Mandrel grooves for ~10 mm wide and ~1.4 mm thick cable

Magnet Parameters

	CCT3/4	
	Nb ₃ Sn	Magnet Load Lines for CCT3/4
Conductor	RRP 54/61	Load Line
Cu:SC ratio	0.85	3500Bore Dipole
Inner Bore Diameter [mm]	90	3000 Nb3Sn Fit
Cable Width [mm]	10.1	3000
Cable Thickness [mm]	1.4	N_ 2500
Number of Strands	23	E 2000
	S-glass Braid	Z 2000
Cable Insulation	0.2 mm thick	♀ 1500
Iron Yoke	Yes	1000
Impregnation Material	CTD-101K	1000 Nb3Sn
		500 Iss = 17700 A
Short Sample Current [kA]	17.7	Lay1 Cond 11.2 Bore Dipole 10.0
		0 1 2 3 4 5 6 7 8 9 10 11 12
Short Sample Bore Field [T]	10.0	Magnetic Field [T]

13

2-Layer CCT Nb₃Sn Plan (CCT Technology Development)

	ССТЗ	CCT4
Bore size [mm]	90	90
	_	1.25 mm gap
Groove design	constant width	🚽 at pole
	RRP 54/61	RRP 54/61
Conductor	Ta doped	Ta doped
HT Temp [C]	650	~ 660
Potting		
configuration	full magnet	full magnet
Ероху	CTD-101K	CTD-101K
Layer-to-layer	_	
interface	bonded	mold released

CCT3 Mandrels and Winding

- Aluminum Bronze mandrels are machined on 4-Axis CNC mill
 - $\circ~$ Rough machining, annealing, final machining process is performed before grooves are machined
 - Groove is machined normal to the mandrel surface
 - Epoxy flow channel is machined at the magnet poles
 - Splice pockets are included for Nb₃Sn magnet
- Winding performed without tension

Machined Mandrel

Coil Winding

CCT3 – Heat Treatment

- Coil was wrapped with perforated stainless steel sheet and secured with hose clamps
- CCT3 Cable protrudes from the surface of the mandrel after heat treatment by ~1.5 mm
- Mandrel distortion could not be measured accurately due to cable protrusion
- Resistance from coil to mandrel after heat treatment is on the order of a few hundred Ω due to Carbon residue on the glass braid

Heat Treatment

Cable Position After Heat Treatment of CCT3

CCT3 – Lead Splices

- Pocket is cut out of mandrel for splices
- Cable is pre-tinned
- Wedge mechanism is used to apply pressure to the solder joint
- Kapton film is placed around the joint

CCT3 – Assembly

- Layers are wrapped with G10 sheet before assembly
- Assembly of layer 1 / layer 2 was difficult
 - \circ $\,$ Cable was above surface increasing friction $\,$
 - Mandrel distortion leads to high friction points
- Cable is forced into the groove by assembly process
 - Possible source of conductor damage

CCT3 – Potting and Test Preparation

- Internal heaters and end caps are added for potting
- Coil is impregnated with CTD-101K epoxy
- Layer 1/2 splice is soldered and supported by G10 block
- Magnet is assembled on header with Iron yoke

CCT3 – Instrumentation

- Voltage taps
 - Outside of splice on each end
 - Inside of splice on each end
 - o ~5 turns in from each end
- Acoustic sensors on AI shell
- Strain gages on AI shell

Voltage Tap Locations

Strain gages on rods that secure the yoke halves to the AI shell

CCT3 – Autopsy

- Extracted first five turns where the quenches were detected (see talk by M. Martchevskii)
- Inner layer de-bonded from outer layer after cutting

CCT3 – Autopsy

- Burned epoxy segment was found
 - On last CCT3 quench the quench protection did not activate
 - High MIITS quench without dump resistor
- Broken wires were found in transition region

Heat Treatment Experiments

- Need to avoid conductor damage during heat treatment and assembly
- Test mandrel with large gaps at the pole was machined to further understanding
- Cable is removed and etched down to the sub-elements to inspect for damage
- No apparent damage was seen after initial test with added pole expansion space

CCT Heat Treatment Test Mandrel

Measured Gaps After Heat Treatment

CCT4 Mandrels and Winding

- CCT 4 Mandrels have 1.25 mm gap at the pole for cable expansion
- Other features are the same as CCT3
- Cable is wound against the inner surface of the turn at the pole
- Resistance to mandrel > $5 \text{ k}\Omega$
 - Wider groove by 0.1 mm
 - Extra space at the pole

Pole Gaps

CCT4 – Heat Treatment

- Copper wire was inserted into groove to force the cable to the bottom of the channel (same as 10-turn tests)
- Mandrel is wrapped with hose clamps
- Cable stays in channel after heat treatment
- Mandrels distort 0.5 1 mm after heat treatment in the N/S orietation
 - \circ $\,$ Not yet clear how much influence cable has on distortion as opposed to machining stress
 - May require additional annealing step after grooves are machined to avoid distortions

CCT4 Heat Treatment Configuration

Cable Position After Heat Treatment of CCT4

CCT4 – Assembly

- Layers are wrapped with G10 sheet before assembly
- Assembly of layer 1 / layer 2 was difficult due to amount of mandrel distortion
- Cable is protected by mandrel since it is below the surface

CCT4 – Instrumentation

- Voltage taps
 - o Outside of splice on each end
 - o Inside of splice on each end
 - \circ 1/4 turn from each end
 - o ~4, 24, 44 turns in from each end
- Heater, voltage taps, and thermometer in outer layer to measure quench propagation
- Acoustic sensors on AI shell (same as CCT3)
- Strain gages on AI shell (same as CCT3)

Summary

- CCT3 showed inverse ramp rate dependence
 - Possible damage from heat treatment or assembly
 - Investigating conductor stability
- Risk of damage substantially reduced for CCT4 with addition of gaps at the poles
- CCT4 fabrication is progressing
 - $\circ~$ Coils and shell have been assembled

