Photon Transport and Photonuclear Reactions

Nuclear Security and Nonproliferation Nondestructive Assay Application Ideas WANDA 2022, 2 March 2022

Brian Quiter, Staff Applied Physicist/Engineer LBNL Nuclear Science Division bjquiter@lbl.gov

Photon Reaction Phenomena (that I've thought about)

In order of increasing *maturity*

- OAM nuclear interactions
- Nuclear Resonance Fluorescence
- Elastic/coherent photon scatter

Application

- Non-destructive assay
 - Cargo scanning
 - Object characterization

- Material accountancy
- New signatures?

Nuclear Physics with OAM photons?

- Photons with orbital angular momentum (OAM) have been created using photon optics
- These photons have been observed to interact with atoms differently than L=0 photons
- Could laser-Compton scattering produce twisted γ-rays?
 - If so, how would they interact with nuclei?

Padgett et al., Physics Today 57, 5, 35 (2004), DOI: 10.1063/1.1768672

Nuclear Resonance Fluorescence

- Unique isotope-specific signatures for non-destructive assay
 - Attractive because inducing γ -radiation is *highly* penetrating (~20 g/cm² mean free path)
 - Challenge is cross sections are typically small when compared to measurement system resolution
 - 'Witness foil' concept
 - Better photon sources?
- Can be used for transmission and back-scatter assays
 - Manipulation of witness foil temperature / chemistry should expose different signatures. (No data to support this)

Nuclear Resonance Fluorescence – data needs

- Abilities to simulate NRF are:
 - Still rudimentary:
 - Graduate students developed GEANT NRF package and hacked ENDF/ACE formats to insert phenomenon into MCNPX/6
 - Based foremost on theoretical extrapolation of limited measurements:
 - Angular correlations/distributions, Voigt profiles, Debye temperature effects, bremsstrahlung interpolation between 2 and 50 MeV endpoint energies
 - Unresolved resonances, e.g., missing 'scissor-mode' strength not included but could affect integral measurements
- Can nuclear photon sources be used to stimulate NRF?
 - Beyond Mossbauer effect... are there chance overlaps from other photon transitions and how strong are they?

Elastic Photon Scattering

- MCNP versions prior to MCNPX v2.7.0 had $\sigma_{Ray}(\theta) = \sigma_{Th}(\theta) [F(q, Z)]^2$ hardcoded non-physical $\sigma_{Th}(\theta) = \frac{r_e^2}{2}(1 + \cos^2\theta) = \frac{r_e^2}{2}(1 + \mu^2)$ truncation of photon scattering form factors
 - Most MCNP photo-atomic libraries have propagated this legacy truncation
- Discovered by XRF Pb studies

incident upon U

Image from MCNP4C manual

John S. Hendricks & Brian J. Quiter (2011) MCNP/X Form Factor Upgrade for Improved Photon Transport, Nuclear Technology, 175:1, 150-161, DOI: 10.13182/NT10-17 LA-UR-11-02295

Elastic Photon Scattering

ENDF supports form factors exclusively

EPDL97 – LLNL compilation of coherent

scatter amplitudes.

Total

Atomic Rayleigh

Delbruck

Nuclear Thomson

Giant Dipole Resonance

10⁻³

10⁻³

10⁻⁴

10⁻⁴

10⁻³

10⁻³

10⁻³

10⁻⁴

Atomic Rayleigh

Delbruck

Nuclear Thomson

Giant Dipole Resonance

EPDL cross section Photons on ²³⁸U@120°

EPDL cross section Photons on ²³⁸U@30°

Scatter cross sections for 2.754-MeV photons. Data from B. Kasten, et al. Phys. Rev. C 33, (1986) pp. 1606. with EPDL97 theory

Conclusions

- New generations of photon sources are becoming available.
 - Source development continues with an eye to deployable systems
 - Ultra-fast photon pulses could create novel signatures, but detector systems to observe them remain a challenge
- Phenomena such as NRF that were seen as too impractical may become practical
 - Data and evaluation are still rudimentary
- Improved sensitivity will make the precision/accuracy of old unglamorous phenomena relevant again

Thank you!!! Questions/comments?

6g of ²⁴⁰PuO₂

First Actinide transmission NRF measurement

First measurement of ²⁴⁰Pu NRF

