

Triangle Universities Nuclear Laboratory (TUNL)

A US Department of Energy Center of Excellence in Nuclear Physics, Durham, NC, USA

Cross Section Measurements of Photonuclear Reaction Pathways Towards Promising Medical Radioisotopes

Mohammad W. Ahmed – North Carolina Central U & Triangle Universities Nuclear Laboratory &

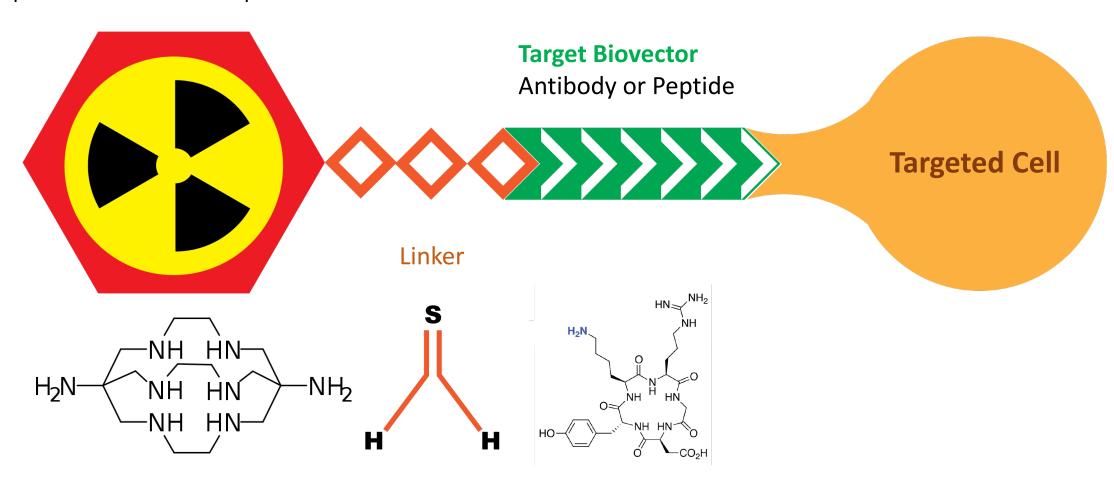
Workshop for Applied Nuclear Data Activities (WANDA 2022)

Cancer: Statistics, types, and treatments

- When the orderly process of cell multiplication breaks down, and abnormal or damaged cells grow and multiply when they shouldn't, tumors are formed. These tumors can be cancerous or benign;
- Cancerous tumors can spread into, or invade, nearby tissues and can travel to distant places in the body to form new metastatic tumors

Cancer is among the leading causes of death and the yearly world-wide cases are expected to be nearly 30 million by year 2040

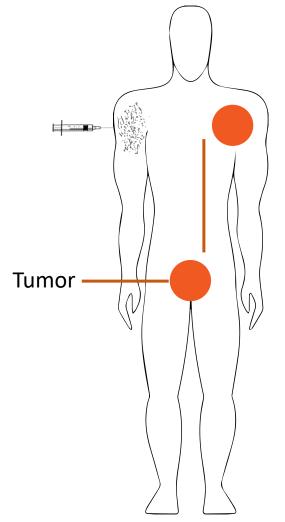
Types of Cancer	Treatment Description	Comments
Localized	Surgical Excision	Collateral damage, trauma due to removal of suspicious growth as well as nearby tissue
	Brachytherapy , Internal Surgical Radiotherapy	Long term radiation therapy. Typically limited to single treatments
	Ion Beam ablation of target tissue	"image-guided" tumor therapy – reduced side effects
Localized & Metastasized	Intravenous Chemotherapy	Severe damage to ALL tissues and biological systems. Goal: kill the cancer before killing the patient
	Intravenous Targeted Radionuclide Therapy (TRT)	R&D in isotopes and delivery methods for highly localized, tumor specific therapy – reduced side effects

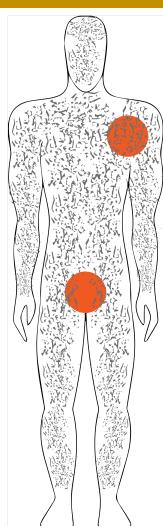


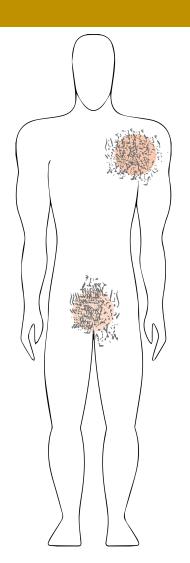
Delivering the radionuclide to the targeted cell

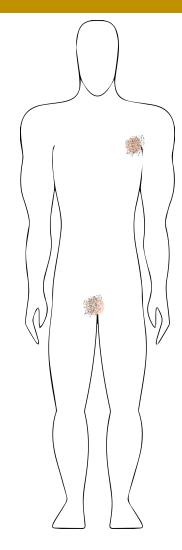
Chelator

organic chemical that bonds with radionuclide metal ions and produces a chelate compound



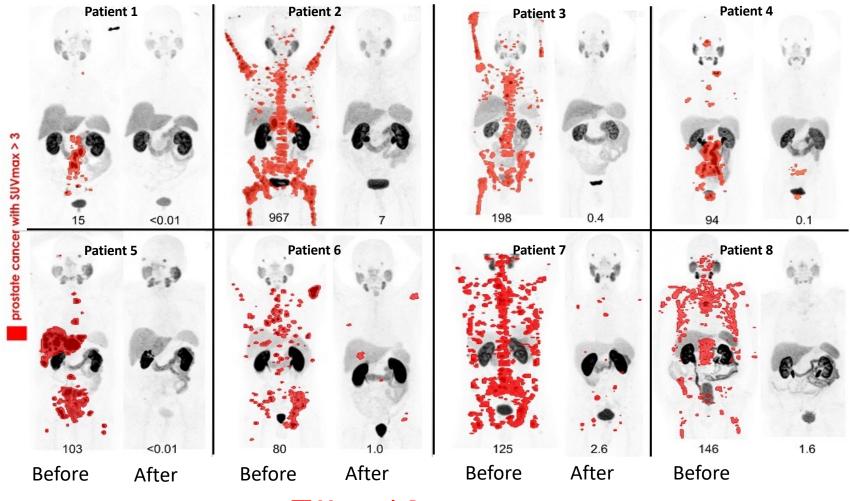






2. distributes in the whole body;

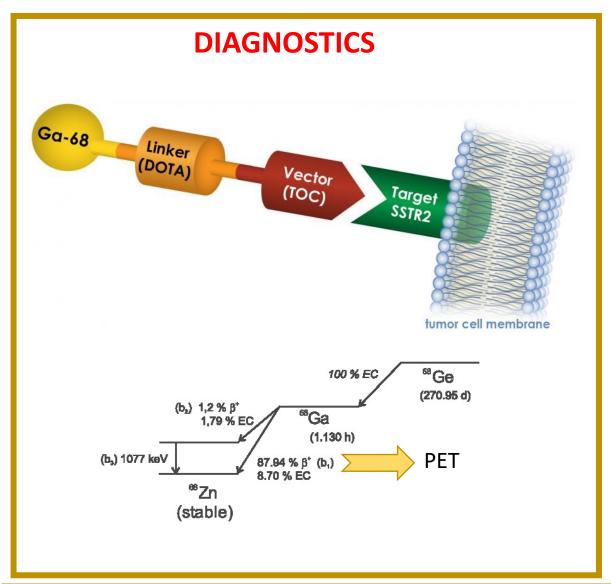
3. Localizes and Concentrates in Target Tissue; 4. Selectively deliver cytotoxic doses of radiation

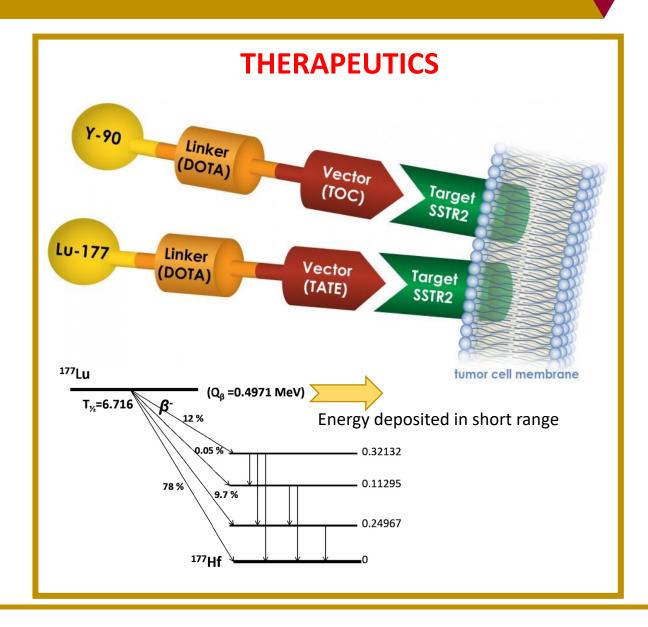


How well it works!

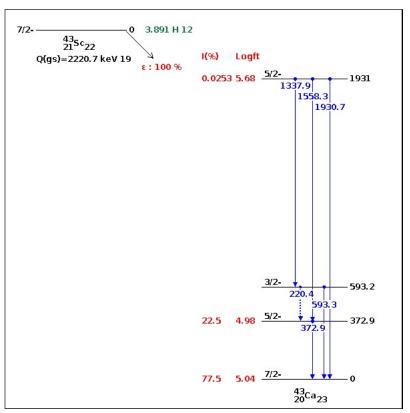
•Images before and after radiopharmaceutical treatment with Lu-177 PSMA617 theranostic in 8 patients with metastatic prostate cancer who exhausted standard treatment options

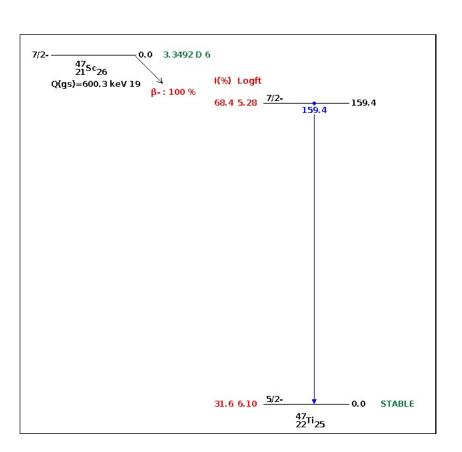
Hoffman, et al. JNM 2018





therapeutics and diagnostics = theranostics

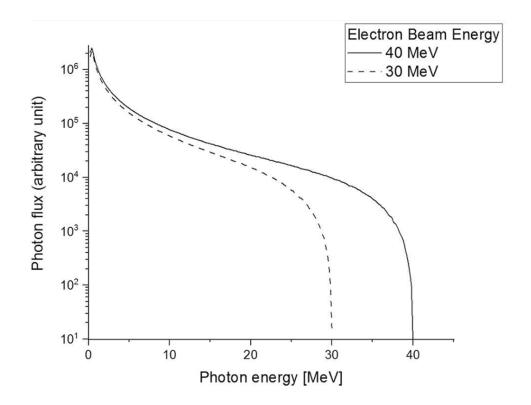



Not all theranostics are equally!

In case of ⁶⁸Ga and ¹⁷⁷Lu, they are two different elements. The chemical behavior of ⁶⁸Ga may be different than ¹⁷⁷Lu

diagnostic therapeutic Similar chemistry

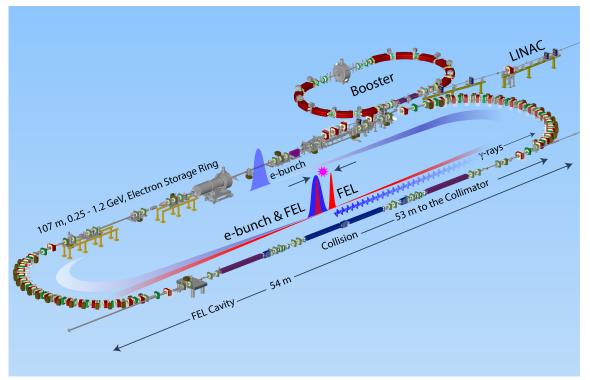
Advantages of similar chemistry with same element of diagnostic and therapeutic agent

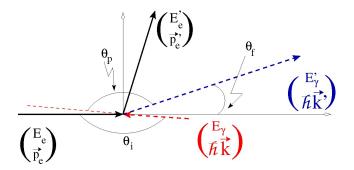


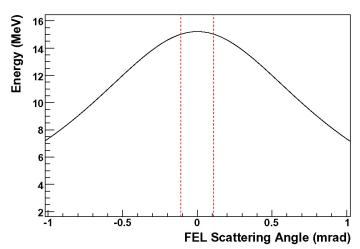
Radionuclide production using high-energy photons

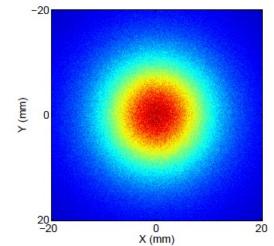
o Isotopes of interest are produced using Bremsstrahlung photons via photonuclear reactions such as (γ,n) , (γ,p) , (γ,α) , (γ,np) , ... (Facilities: LEAF @ ANL)

- In order to quantify the production yields, we must correctly know the probability (cross-section) of all possible photonuclear reactions leading to the production of a particular isotope from a given parent sample
- These cross section must be known as a function of photon energy

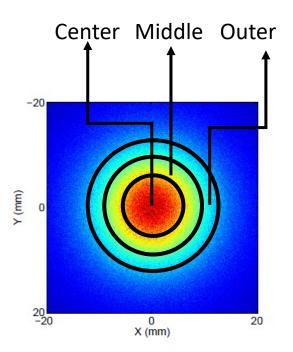





Gamma rays from Compton backscattering of FEL photons


High Intensity Gamma Ray Source (HIGS)

$$E_{\gamma} = \frac{4\gamma^2 E_{\lambda}}{1 + \gamma \theta_f + 4\gamma^2 E_{\lambda} / E_e}$$

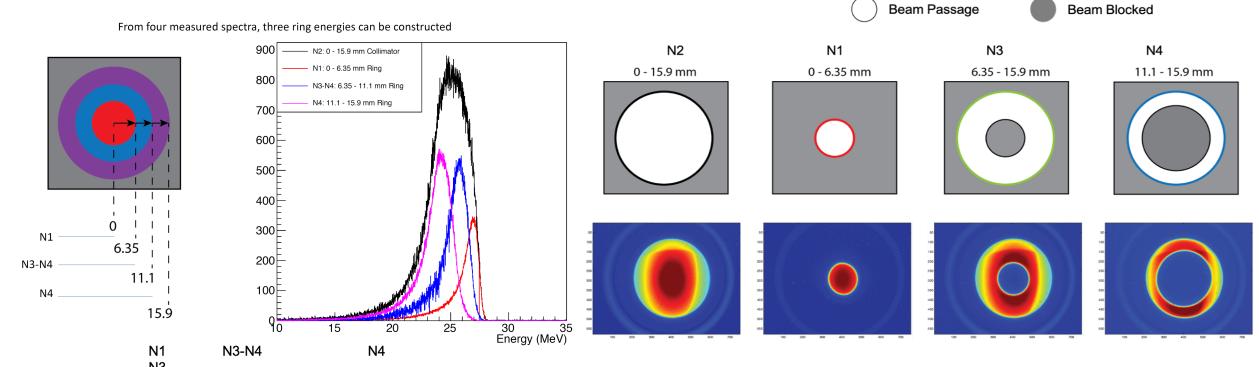




The measurement plan

- We need to measure cross section as a function of energy
- If we did one energy setting at a time, it would require a lot of beam time
- Use energy-spatial distribution of the beam to measure cross sections at multiple energies at one energy setting of irradiation

- Target samples fabricated to match three different energy regions of the beam
- Multiple target samples mounted in a stack

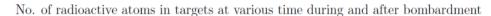


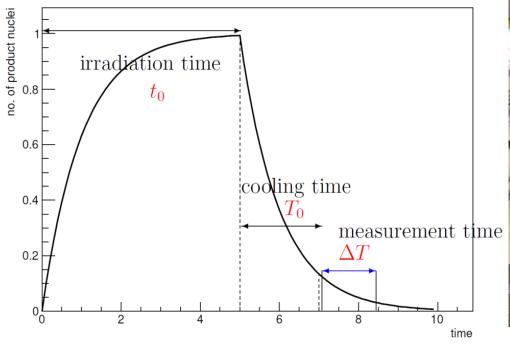
The Concept Test

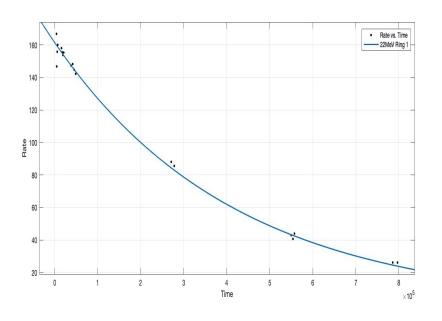
N3					
Rings	0 – 6.35	6.35 – 11.1	11.1 – 15.9	6.35 – 15.9	
Meas. Flux %	18%	37%	45%	81%	
Siml. Flux %	20%	35%	45%	80%	
Meas. Energy	27.0	25.8	24.1	24.9	
Siml. Energy	27.1	26.1	24.5	25.6	

Meas. dE	0.66	1.6	2.4	
Siml. dE	0.52	1.8	2.2	

• The concept of multiple energy measurements in a single irradiation works







The Measurement Cycle

The counting stations

The radioactive decay counting

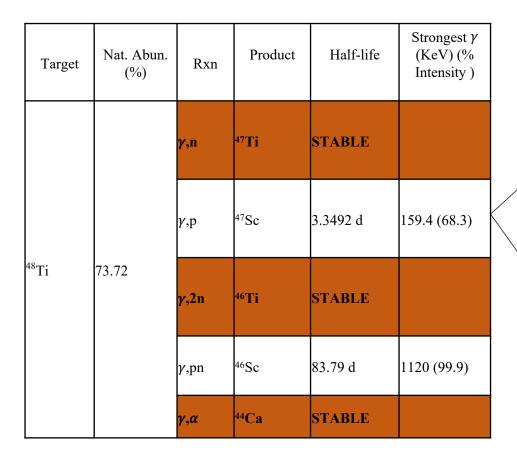
Primary and secondary isotopes of interest

Target	Reaction	Product	Observed	
⁴⁸ Ti	(γ,p)	⁴⁷ Sc	YES - NCCU	
	(γ,pn)	⁴⁶ Sc	NOT seen - NCCU	
⁶⁸ Zn	(γ,p)	⁶⁷ Cu	YES	
	(y,pn)	⁶⁶ Cu	NO (short half-life)	
⁷⁷ Se	(γ,p)	⁷⁶ As	NO data taken	
⁷⁸ Se	(γ,pn)	⁷⁷ As		
¹⁸⁷ Os	(γ,p)	¹⁸⁶ Re	NO (too weak)	
¹⁸⁹ Os	(γ,p)	¹⁸⁸ Re	YES	
¹⁹⁰ Os	(γ,p)	¹⁸⁹ Re	YES	
¹⁹⁶ Pt	(γ,p)	¹⁹⁵ lr	Complicated analysis	
	(γ,n)	^{195m} Pt	YES	
¹⁹⁷ Au	(γ,pn)	^{195m} Pt	Complicated analysis	
	(γ,n)	¹⁹⁶ Au	YES	
¹⁶² Dy	(γ,p)	¹⁶¹ Tb	NO data taken	
	(γ,pn)	¹⁶⁰ Tb		

Target	Product isotope	Reaction(s)
natZn	62 Zn	64 Zn(γ ,2n)
	63 Zn	64 Zn(γ ,n)
		66 Zn(γ ,3n)
	⁶⁵ Zn*	66 Zn(g,n)
		67 Zn(γ ,2n)
		68 Zn(γ ,3n)
	69 Zn	70 Zn(γ ,n)
natOs	¹⁹¹ Os	$^{192}\mathrm{Os}(\gamma,\mathrm{n})$
	¹⁸⁵ Os	$^{186}\mathrm{Os}(\gamma,\mathrm{n})$
		$^{187}\mathrm{Os}(\gamma,2\mathrm{n})$
		$^{188}\mathrm{Os}(\gamma,3\mathrm{n})$
natPt	¹⁹⁷ Pt	198 Pt(γ ,n)
	¹⁹⁴ Ir*	195 Pt((γ ,p)
		196 Pt((γ ,pn)
		198 Pt((γ ,p3n)
¹⁹⁷ Au	¹⁹⁴ Au	197 Au(γ ,3n)

An example: Production of ⁴⁷Sc from ^{nat}Ti(γ,X) reaction

Isotope	Photonuclear Reaction Pathway to	Energy Threshold	Comments
	production of ⁴⁷ Sc		
⁴⁶ Ti	Not possible		Disregard
⁴⁷ Ti	Not possible		Disregard
⁴⁸ Ti	48Ti (γ, p)	11.44 MeV	Primary reaction studied at all
			energies
⁴⁹ Ti	49Ti (γ, np)	17.36 MeV	Secondary reaction studied included
			above 17 MeV
⁵⁰ Ti	50Ti (γ, np)	22.04 MeV	Secondary reaction ignored due to
			highly suppressed cross section as
			compared to the primary reaction



An example: Focus on ⁴⁷Sc

⁴⁷Sc: Shortest half life of 3.3492days produced from the reaction γ ,p

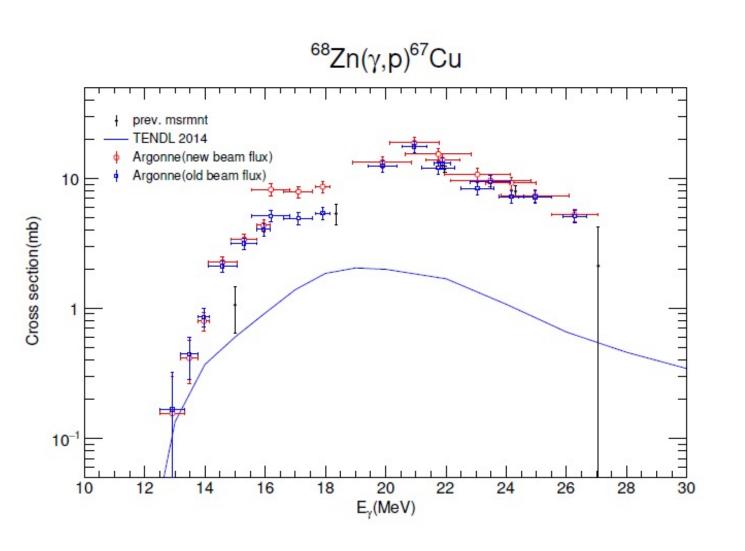
⁴⁷Sc: Theragnostic agents in nuclear medicine (both purposes: diagnosis as well as treatment)

Benchmarking: The GOLD Standard

Target	Nat. Abun.	Rxn	Product	Half-life	Strongest γ (KeV) (% Intensity)
¹⁹⁷ Au	100	γ,n	¹⁹⁶ Au	6.17 d	355.73 (87) 333.03 (22.9)
		γ ,p	¹⁹⁶ P t	STABLE	
		γ,2n	¹⁹⁵ Au	186.01. d	98.85(11.21)
		γ,pn	¹⁹⁵ Pt	4.01 d	98.9(11.7)
		γ,α	¹⁹³ Ir	10.53 d	80.22(0.00467)

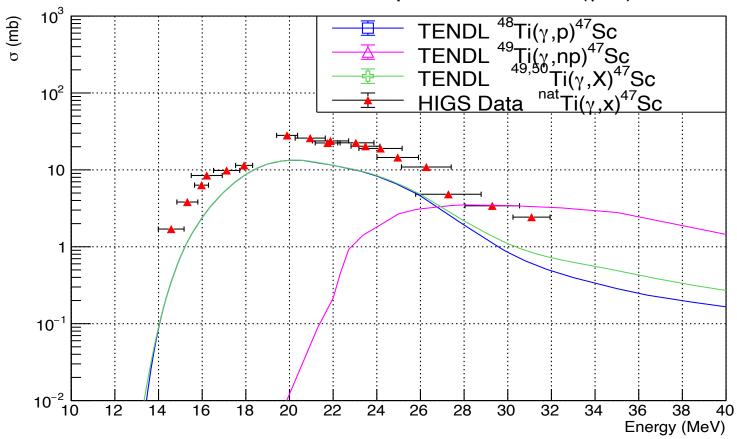
¹⁹⁶Au: Used as calibration and has a half life of 6.17days and is produced from the reaction γ ,n

Benchmarking: The GOLD Standard

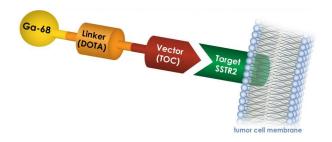


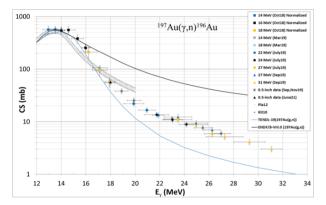
An example: Production of 67 Cu from 68 Zn(γ ,p) reaction

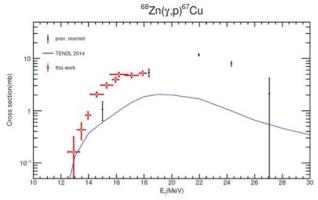
Copper-67 $(t_{1/2} = 2.58 \text{ days}) \text{ decays}$ by β^- (E_{β}-max: 562 keV) and γ -rays (93 keV and 185 keV) rendering it with potential for both radionuclide therapy and single-photon emission computed tomography (SPECT) imaging.



An example: Production of 47 Sc from nat Ti(γ ,X) reaction







- Radioisotopes are used for medical therapeutics and diagnostics, e.g., cancer treatment, PET imaging and SPEC imaging
- Radioisotopes are produced using a variety of accelerated charged particle beams, accelerator produced neutron beams, and neutrons in nuclear reactors.
 Photonuclear reactions provide an option for high specific radioactivity production, i.e., specific activity per unit mass, for isotopes needed in medicine.
- Designing systems for radioisotope production requires realistic simulations of complex systems. The GEANT-4 is the standard transport code using in this application. The reliability of the simulations depends on having libraries of accurate photonuclear reaction data at photon energies across the GDR region where most of the photoabsorption strength exist. Databases used in the simulations include TENDL, JENDL, ENDF, JEFF, CENDL. The data and evaluations in these databases must be validated with experiment. Examples of (γ, n) and (γ, p) and (γ, pn) reactions were presented in this talk.
- Cross-section measurements were recently performed at HIGS on reaction pathways to the production of 47 Sc [48 Ti(γ , p) + 49 Ti(γ , pn) + 50 Ti(γ , t)], 67 Cu [68 Zn(γ , p)], and 195 mPt [196 Pt(γ , n)].
- More cross-section measurements that produce radioisotopes important for medical treatment and diagnostics, e.g., ¹⁷⁷Lu [¹⁷⁸Hf(γ , p), ¹⁷⁹Hf(γ , pn), ¹⁸⁰Hf(γ , t), ¹⁸¹Ta(γ , α)].

F

References (1/2)

- Koning, A.J., et al. TENDL-2014: TALYS-based evaluated nuclear data library. 2014, Available from: ftp://ftp.nrg.eu/pub/www/talys/tendl2014/gamma_html/gamma.html
- 2. K. Shibata, O. Iwamoto, T. Nakagawa, N. Iwamoto, A. Ichihara, S. Kunieda, S. Chiba, K. Furutaka, N. Otuka, T. Ohsawa, T. Murata, H. Matsunobu, A. Zukeran, S. Kamada, and J. Katakura: "JENDL-4.0: A New Library for Nuclear Science and Engineering," *J. Nucl. Sci. Technol.*. **48**(1), 1-30 (2011).
- 3. K. Shibata, O. Iwamoto, T. Nakagawa, N. Iwamoto, A. Ichihara, S. Kunieda, S. Chiba, N. Otuka, and J. Katakura: "JENDL-4.0: A New Library for Innovative Nuclear Energy Systems," Proc. 2010 the International Conference on Nuclear Data for Science and Technology (ND2010), <u>J. Korean. Phys. Soc.</u>, **59**(23), 1046-1051 (2011).
- 4. O. Iwamoto, T. Nakagawa, N. Otuka, and S. Chiba: "Covariance Evaluation for Actinide Nuclear Data in JENDL-4," Proc. 2010 the International Conference on Nuclear Data for Science and Technology (ND2010), *J. Korean. Phys. Soc.*, **59**(23), 1224-1229 (2011).
- 5. G. Chiba, K. Okumura, K. Sugino, Y. Nagaya, K. Yokoyama, T. Kugo, M. Ishikawa and S. Okajima: "JENDL-4.0 Benchmarking for Fission Reactor Applications," *J. Nucl. Sci. Technol.*, **48**(2), 172-187 (2011).
- 6. M.B. Chadwick, M. Herman, P. Obložinský, M.E. Dunn, Y. Danon, A.C. Kahler, D.L. Smith, B. Pritychenko, G. Arbanas, R. Arcilla, R. Brewer, D.A. Brown, R. Capote, A.D. Carlson, Y.S. Cho, H. Derrien, K. Guber, G.M. Hale, S. Hoblit, S. Holloway, T.D. Johnson, T. Kawano, B.C. Kiedrowski, H. Kim, S. Kunieda, N.M. Larson, L. Leal, J.P. Lestone, R.C. Little, E.A. McCutchan, R.E. MacFarlane, M. MacInnes, C.M. Mattoon, R.D. McKnight, S.F. Mughabghab, G.P.A. Nobre, G. Palmiotti, A. Palumbo, M.T. Pigni, V.G. Pronyaev, R.O. Sayer, A.A. Sonzogni, N.C. Summers, P. Talou, I.J. Thompson, A. Trkov, R.L. Vogt, S.C. van der Marck, A. Wallner, M.C. White, D. Wiarda, P.G. Young, "ENDF/B-VII.1: Nuclear Data for Science and Technology: Cross Sections, Covariances, Fission Product Yields and Decay Data", Nucl. Data Sheets 112(2011)2887.

References (1/2)

- 7. M.B. Chadwick, P. Obložinský, M. Herman, N.M. Greene, R.D. McKnight, D.L. Smith, P.G. Young, R.E. MacFarlane, G.M. Hale, S.C. Frankle, A.C. Kahler, T. Kawano, R.C. Little, D.G. Madland, P. Moller, R.D. Mosteller, P.R. Page, P. Talou, H. Trellue, M.C. White, W.B. Wilson, R. Arcilla, C.L. Dunford, S.F. Mughabghab, B. Pritychenko, D. Rochman, A.A. Sonzogni, C.R. Lubitz, T.H. Trumbull, J.P. Weinman, D.A. Brown, D.E. Cullen, D.P. Heinrichs, D.P. McNabb, H. Derrien, M.E. Dunn, N.M. Larson, L.C. Leal, A.D. Carlson, R.C. Block, J.B. Briggs, E.T. Cheng, H.C. Huria, M.L. Zerkle, K.S. Kozier, A. Courcelle, V. Pronyaev, S.C. van der Marck, "ENDF/B-VII.0: Next generation evaluated nuclear data library for nuclear science and technology", Nucl. Data Sheets 107(2006)2931.
- 8. OECD/NEA Data Bank, "The JEFF-3.1.1 Nuclear Data Library", JEFF Report 22, OECD/NEA Data Bank (2009).
- 9. OECD/NEA Data Bank, "The JEFF-3.1 Nuclear Data Library", <u>JEFF Report 21, OECD/NEA Data Bank (2006)</u>
- 10. OECD/NEA Data Bank, "The JEFF-3.0 Nuclear Data Library", JEFF Report 19, OECD/NEA Data Bank (2005).
- 11. OECD/NEA Data Bank, "The JEF-2.2 Nuclear Data Library", <u>JEFF Report 17, OECD/NEA Data Bank (2000)</u>.
- 12. Z.G. Ge, Y.X. Zhuang, T.J. Liu, J.S. Zhang, H.C. Wu, Z.X. Zhao, H.H. Xia, "The Updated Version of Chinese Evaluated Nuclear Data Library (CENDL-3.1)", J. Kor. Phys. Soc. **59**(2011)1052.
- 13. China Nuclear Data Center, "A brief description of the second version of Chinese Evaluated Nuclear Data Library CENDL-2", Communication of Nuclear Data Progress No.6, [same as report INDC(CPR)-25], China Nuclear Information Centre (1991).
- 14. A.I. Blokhin, A.V. Ignatyuk, V.N. Manokhin, M.N. Nikolaev, V.G. Pronyaev (ed.), "BROND-2.2, Russian Evaluated Neutron Reaction Data Library", <u>IAEA-NDS-90 Rev.8, International Atomic Energy Agency (1994)</u>.
- 15. M. Hofman, J. Violet, S. Sandhu, J. Ferdinandus, S.P. Thang, A. Iravani, G. Kong, A.R. Kumar, T. Akhurst, P. Jackson, M. Scalzo, S. Williams, and R. Hicks Hoffman, "High activity, pain reduction and low toxicity with Lutetium-177 PSMA617 theranostics in metastatic castrate-resistant prostate cancer (mCRPC): results of a phase II prospective trial", Journal of Nuclear Medicine May 2018, **59** (supplement 1) 531.

☐ M. W. Ahmed, Funmilola Noiki, Benjamin Crowe, Ramon Sosa

☐ David Rostch, Jerry Nolen, Jeongseog Song, Robin Kruijff

☐ R.V.F. Janssens

