Available Photonuclear Reaction Data and Libraries, and Evaluation Method

Toshihiko Kawano Theoretical Division, LANL

Major Photonuclear Data Libraries

- IAEA photonuclear data library released in 1999
 - IAEA Coordinated Research Project, chaired by M.B. Chadwick
 - 164 isotopes evaluated based largely on model calculations (GNASH and others)
- ENDF photonuclear data library adopted IAEA1999 with some upgrades
- JENDL photonuclear data libraries
 - JENDL/PD-2004, JENDL/PD-2016, and JENDL/PD-2016.1 (181 in standard version, 2681 in extended)
 - older evaluations by ALICE-F, and upgraded by CCONE

IAEA 2019

- New IAEA CRP, including both the photon strength function and photonuclear data library
- 219 isotopes, extended photon energy of 200 MeV
- Nuclear Data Sheets 163, 109 (2020)

Available online at www.sciencedirect.com

ScienceDirect

Nuclear Data Sheets 163 (2020) 109-162

Nuclear Data Sheets

www.elsevier.com/locate/nds

IAEA Photonuclear Data Library 2019

T. Kawano,^{1,*} Y. S. Cho,² P. Dimitriou,³ D. Filipescu,⁴ N. Iwamoto,⁵ V. Plujko,⁶ X. Tao,⁷ H. Utsunomiya,⁸ V. Varlamov,⁹ R. Xu,⁷ R. Capote,³ I. Gheorghe,⁴ O. Gorbachenko,⁶ Y.L. Jin,⁷ T. Renstrøm,¹⁰ M. Sin,¹¹ K. Stopani,⁹ Y. Tian,⁷ G.M. Tveten,¹⁰ J.M. Wang,⁷ T. Belgya,¹² R. Firestone,¹³ S. Goriely,¹⁴ J. Kopecky,¹⁵ M. Krtička,¹⁶ R. Schwengner,¹⁷ S. Siem,¹⁰ and M. Wiedeking¹⁸

IAEA Photonuclear Data Library 2019

- New experimental data provided by NewSUBARU, Laser Compton Scattering Facility by Utsunomiya
- Evaluation of existing experimental data by Varlamov
 - Neutron-counting experiments, (g,1n), (g,2n) etc, sometimes show cross-talk between different reaction channels
 - They were "corrected" by CPNRM, and data in EXFOR marked as "evaluated"
- Evaluated data produced by several institutes with different HF codes
 - Cho (KAERI) uses TALYS
 - Filipescu et al. (IFIN-HH), EMPIRE
 - Iwamoto (JAEA), CCONE
 - Xu et al. (CIAE), GLUNF for light elements, MEND-G for medium to heavy
 - Kawano (LANL) didn't produce actual files but performed calculations with CoH₃

Available Experimental Data

- Bremsstrahlung
 - continuous energy spectrum requires unfolding
 - quasi mono-energetic photons by tagging U. Illinois
- Positron annihilation produces quasi monoenergetic photons
 - Saclay and LLNL

Data are available in EXPOR, but need some interpretation

Laser Compton scattering - NewSUBARU

HIgS (TUNL), ELI (EU)

Typical Evaluation Method, Light Element

- R-matrix analysis very limited (no evaluation in IAEA2019)
- Hybrid method
 - Photo-absorption cross section taken from experimental data

Evaluation Method, Medium to Heavy Nuclei

- Full Hauser-Feshbach model calculation
 - Photo-absorption = Giant Dipole Resonance + Quasi-Deuteron model
 - GDR parameterized by Lorentzian

$$\sigma_{\rm GDR} = \sigma_R \frac{E_\gamma^2 \Gamma_R^2}{(E_R^2 - E_\gamma^2)^2 + E_\gamma^2 \Gamma_R^2}$$

QD photo-absorption by Levinger, Chadwick, at higher energies

$$\sigma_{\rm QD} = L \frac{NZ}{A} \sigma_d P_b$$

Evaluation Method, Actinide

- All actinide evaluations in IAEA2019 evaluated by Iwamoto with CCONE
 - Photo-fission calculated with Hauser-Feshbach
 - or taken from neutron-induced library

Data Compilation and Representation

- Two approaches to store all the calculated results in an evaluated file
 - Inclusive: Total absorption cross section given in MF3 MT5 (3), then production of residual nuclei and/or emitted particles given in MF6
 - Exclusive: Cross sections for each channels given in MF3
 - There are 6 different data representation given in IAEA2019 (IAEA-NDS-0232)

This is not the issue, but often causes problems when compared with experimental data

Data Processing Issue

NJOY problem reported in IAEA-NDS-0232

- Angular distribution of secondary particles not correctly handled
- This was probably caused by the data format in IAEA1999
 - Evaluation performed with the GNASH code
 - Pre-equilibrium angular distributions given by Kalbach's systematics
 - NJOY implicitly assumes Kalbach's parameters are given,
 - while new evaluations give the Legendre coefficients
- Already fixed by W. Haek (LANL), and updated NJOY available

Need More Development in Theories

- R-matrix analysis, if possible, including photon channels
- Better GDR parameters predicted by nuclear structure theories, such as QRPA or FAM, when experimental data are unavailable (Sasaki, arXiv:2202.13214)
- High energy photon reactions still uncertain
 - Pre-equilibrium process for photon-induced reaction still uncertain
 - angular distributions by mimicking neutron-induced reaction
 - Quasi-deuteron cross section parameterized by Chadwick adopted all the codes
 - photo-absorption cross sections identical at higher energies
- Evaluated experimental data include model calculation
 - Correction factor depends on the model employed
 - This may cause some uncertainties if evaluation performed based on the corrected data

Missing Photo-Fission Gamma Production

- Prompt fission neutron spectrum given, However, MF6/MT5 for ZAP = 0 includes channels other than fission only
 - Fission gamma multiplicities should be ~ 7
- LANL model, published in PRC by Lovell et al., is able to produce the fission gammarays, at least up to 20 MeV

Concluding Remarks

- IAEA 2019 is the most updated photonuclear data library
 - International effort, evaluated by multiple institutes
 - Model-calculation-based evaluations, which include NewSUBARU data
 - GDR parameters compiled by Plujko et al. tabulated in the report
- Deficiencies in theoretical modeling
 - R-matrix for light elements
 - Pre-equilibrium process for photon-induced reactions
 - Angular distributions for secondary neutrons, protons, etc.
 - Photo-fission needs more work, both theory development and experimental data
 - prompt and delayed neutron energy spectra and multiplicities
 - prompt fission gamma

