Nuclear Data Adjustment and Impact on Applications

Chairs: Denise Neudecker (LANL) Amanda Lewis (NNL) Robert Casperson (LLNL)

NDWG Advisor: Patrick Talou (LANL)
Rapporteurs: Katelyn Cook (RPI), Ali Dreyfuss (LLNL), Daniel Siefman (LLNL)
Introduction to Nuclear Data Adjustment

WANDA 2022
Session 6 – Nuclear Data Adjustment and Impact on Applications
March 3, 2022

Robert Casperson
Lawrence Livermore National Laboratory
What is adjustment?

- Adjustment refers to the inclusion of integral data in a differential evaluation.
- Adjustment requires prior knowledge of the differential evaluation, and realistic nuclear data for all materials the integral system is sensitive to.
- Integral data often has smaller uncertainties than differential data, so adjustment can reduce uncertainties in an application specific way.
The adjustment process

- Differential Data
- Nuclear Theory
- Integral Data
- Integral Sensitivities

General Purpose Library

Integral Validation

Adjustment

Adjustment Tools

Application Specific Library
Simplest example of integral data

- There are many differential fission measurements with systematic uncertainty of 1-2%.
- Integral measurements with 252Cf(sf) neutrons require shape information, but also have uncertainties of 1%.
- There is a 2.4% discrepancy between ENDF and these 252Cf(sf) neutron measurements, so adjustment may have a large impact on actinide nuclear data.
A more complex example of integral data

- Critical assembly fission ratio measurements are sensitive to fission cross sections and the assembly neutron spectrum.
- Criticality data is considered here along with fission ratios to ensure PFNS and scattering properties that are consistent with the critical assembly.
- The variety of fission cross section thresholds available also constrain the neutron spectrum.
 - One concern about these measurements is the need for modeling corrections due to the presence of the fission chamber.
 - Otherwise, the measurements were quick, which allowed for multiple fission chambers and foil thicknesses.
The ENDF/B-VIII.0 Spectral Indices Validation Data

<table>
<thead>
<tr>
<th>Assembly</th>
<th>Quantity</th>
<th>U_{238}/U_{235}</th>
<th>Np_{237}/U_{235}</th>
<th>U_{233}/U_{235}</th>
<th>Pu_{239}/U_{235}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Godiva</td>
<td>Calc</td>
<td>0.1583</td>
<td>0.8318</td>
<td>1.5793</td>
<td>1.3846</td>
</tr>
<tr>
<td></td>
<td>Exp-B</td>
<td>0.1643 ± 0.0018</td>
<td>0.8516 ± 0.012</td>
<td>1.4152 ± 0.014</td>
<td>1.4020 ± 0.025</td>
</tr>
<tr>
<td></td>
<td>Exp-A</td>
<td>0.1642 ± 0.0018</td>
<td>0.837 ± 0.013</td>
<td>1.59 ± 0.03</td>
<td>1.4020 ± 0.025</td>
</tr>
<tr>
<td></td>
<td>Calc/Exp</td>
<td>C/E=0.9636</td>
<td>C/E=0.9767</td>
<td>C/E=0.9933</td>
<td>C/E=0.9784</td>
</tr>
<tr>
<td>Jezebel</td>
<td>Calc</td>
<td>0.2121</td>
<td>0.9770</td>
<td>1.5583</td>
<td>1.4273</td>
</tr>
<tr>
<td></td>
<td>Exp-B</td>
<td>0.2133 ± 0.0023</td>
<td>0.9835 ± 0.014</td>
<td>1.4609 ± 0.013</td>
<td>1.448 ± 0.029</td>
</tr>
<tr>
<td></td>
<td>Exp-A</td>
<td>0.2137 ± 0.0023</td>
<td>0.962 ± 0.016</td>
<td>1.48 ± 0.029</td>
<td>1.4609 ± 0.013</td>
</tr>
<tr>
<td></td>
<td>Calc/Exp</td>
<td>C/E=0.9943</td>
<td>C/E=0.9934</td>
<td>C/E=0.9924</td>
<td>C/E=0.9770</td>
</tr>
<tr>
<td>Big-10</td>
<td>Calc</td>
<td>0.0358</td>
<td>0.0375 ± 0.0009</td>
<td>1.170</td>
<td>1.170 ± 0.028</td>
</tr>
<tr>
<td></td>
<td>Exp</td>
<td>0.0375 ± 0.0009</td>
<td>0.9770</td>
<td>1.198 ± 0.028</td>
<td>1.170 ± 0.028</td>
</tr>
<tr>
<td></td>
<td>Calc/Exp</td>
<td>C/E=0.954</td>
<td>C/E=0.954</td>
<td>C/E=0.9770</td>
<td>C/E=0.9770</td>
</tr>
<tr>
<td>Jezebel-23</td>
<td>Calc</td>
<td>0.2121</td>
<td>0.9851</td>
<td>1.3622</td>
<td>1.3622 ± 0.012</td>
</tr>
<tr>
<td></td>
<td>Exp-B</td>
<td>0.2131 ± 0.0026</td>
<td>0.9970 ± 0.015</td>
<td>1.3847 ± 0.012</td>
<td>1.3847 ± 0.012</td>
</tr>
<tr>
<td></td>
<td>Exp-A</td>
<td>0.2131 ± 0.0026</td>
<td>0.977 ± 0.016</td>
<td>1.37 ± 0.02</td>
<td>1.37 ± 0.02</td>
</tr>
<tr>
<td></td>
<td>Calc/Exp</td>
<td>C/E=0.9951</td>
<td>C/E=0.9951</td>
<td>C/E=0.9911</td>
<td>C/E=0.9888</td>
</tr>
<tr>
<td>Flattop-25</td>
<td>Calc</td>
<td>0.1451</td>
<td>0.7735</td>
<td>1.5664</td>
<td>1.3622 ± 0.012</td>
</tr>
<tr>
<td></td>
<td>Exp-B</td>
<td>0.1492 ± 0.0016</td>
<td>0.7804 ± 0.01</td>
<td>1.60 ± 0.003</td>
<td>1.37 ± 0.02</td>
</tr>
<tr>
<td></td>
<td>Exp-A</td>
<td>0.149 ± 0.0002</td>
<td>0.76 ± 0.01</td>
<td>1.3622 ± 0.012</td>
<td>1.37 ± 0.02</td>
</tr>
<tr>
<td></td>
<td>Calc/Exp</td>
<td>C/E=0.9722</td>
<td>C/E=0.9911</td>
<td>C/E=0.9711</td>
<td>C/E=0.9837</td>
</tr>
<tr>
<td>Flattop-Pu</td>
<td>Calc</td>
<td>0.1801</td>
<td>0.8593</td>
<td>0.8561 ± 0.012</td>
<td>0.8561 ± 0.012</td>
</tr>
<tr>
<td></td>
<td>Exp-B</td>
<td>0.1799 ± 0.0002</td>
<td>0.8561 ± 0.012</td>
<td>0.8561 ± 0.012</td>
<td>0.8561 ± 0.012</td>
</tr>
<tr>
<td></td>
<td>Exp-A</td>
<td>0.180 ± 0.0003</td>
<td>0.84 ± 0.01</td>
<td>0.84 ± 0.01</td>
<td>0.84 ± 0.01</td>
</tr>
<tr>
<td></td>
<td>Calc/Exp</td>
<td>C/E=1.0011</td>
<td>C/E=1.0037</td>
<td>C/E=1.0037</td>
<td>C/E=1.0037</td>
</tr>
<tr>
<td>Flattop-23</td>
<td>Calc</td>
<td>0.1892</td>
<td>0.9030</td>
<td>0.9030</td>
<td>0.9030</td>
</tr>
<tr>
<td></td>
<td>Exp-B</td>
<td>0.1916 ± 0.0021</td>
<td>0.9103 ± 0.013</td>
<td>0.9103 ± 0.013</td>
<td>0.9103 ± 0.013</td>
</tr>
<tr>
<td></td>
<td>Exp-A</td>
<td>0.191 ± 0.0003</td>
<td>0.89 ± 0.01</td>
<td>0.89 ± 0.01</td>
<td>0.89 ± 0.01</td>
</tr>
<tr>
<td></td>
<td>Calc/Exp</td>
<td>C/E=0.9876</td>
<td>C/E=0.9920</td>
<td>C/E=0.9920</td>
<td>C/E=0.9920</td>
</tr>
</tbody>
</table>

- Assembly letters indicate main actinide.
- For many assemblies, reaction rates systematically low by ~2%; all are ratios to 235U(n,f).
- Some relevant fission ratios claim 1% uncertainty.

What can you do when validation data fails to validate? Adjust!
Adjustment with many integral data

- Adjustment includes k_{eff} and reaction rates, so resulting evaluation consistent with both.

- This set of integral data from the ENDF spectral indices table has enough statistical significance to cause substantial changes in differential evaluation.
Impact on major actinide nuclear data

- Adjustment indicates a change in the 235U(n,f) cross section.
- Adjusted fission and inelastic scattering uncertainties are reduced, resulting from combination of fission data, spectral sensitivity, and criticality data.
- Impact not sensitive to k_{eff} uncertainty; just as significant when all are set to 0.3%.
Who would be impacted by adjustment?

Several programs rely on actinide and other nuclear data:

- Nuclear Energy
- Criticality Safety
- Stockpile Stewardship
- Nuclear Forensics
- Incident Response
- Nuclear Threat Reduction
Correlations between isotopes

Reaction order from lower left to upper right:
- (n,tot)
- (n,el)
- (n,n’)
- (n,2n)
- (n,3n)
- (n,f)
- (n,g)
- nubar
- pfns

Adjusting with several integral data requires tracking correlations between all materials.
Adjustment with pulsed spheres

- Pulsed sphere nToF spectra are very sensitive to inelastic and prompt fission neutron spectra.
- Due to 14 MeV source, fission-relevant nuclear data only impacted if critical assembly constraint included.
- As shown below, result is very sensitive to efficiency and uncertainty assumptions.
Takeaways About Adjustment

- Adjustment is a useful tool for adding integral data to a differential evaluation.

- The small uncertainties of many integral experiments make it extremely impactful when it can be used.

- Adjustment relies on realistic uncertainties for all relevant materials.

- It provides a method for dealing with problems found in validation data.

- There is a diverse set of historical integral data that could impact many programs but would require a careful understanding of uncertainties.
Adjustment method

- There are several methods for adjustment, but we have used a hybrid of Monte Carlo sampling and sensitivity analysis for the regression (GLS).
 - Covariance matrices generated from ENDF/B-VIII.0 using NJOY.
 - Monte Carlo sample phases are decorrelated, which requires covariance rank + 1 samples.
 - Variations include PFNS covariance, but not elastic angular or inelastic spectral covariances.

- Assembly and foil nuclear data varied together, to account for uncertainty in assembly neutron spectrum.

![Godiva spectrum confidence bands](image1)

![Change in Godiva spectrum](image2)

Results from change in 235U(n,n')