Secondary Neutron Production in space (and ion therapy)

Where they come from,
Why they are important, and
The current state of the data.

Hunter Ratliff
Department of Computer science, Electrical engineering and Mathematical sciences
2 March 2022
Where do secondary neutrons come from in space?

› 2 radiation sources in deep space
 › Solar energetic particles (mostly p\(^+\), some He)
 › Acute risk - solar particle events
 › Galactic Cosmic Rays (GCRs, all ions)
 › Chronic risk - constant GCR flux

› GCR energies peak around 0.1-1 GeV/n

› Neutrons produced in fragmentation reactions with target material (shielding / tissue)

Where do secondary neutrons come from in space?

- 2 radiation sources in deep space
 - Solar energetic particles (mostly p^+, some He)
 - Acute risk - solar particle events
 - Galactic Cosmic Rays (GCRs, all ions)
 - Chronic risk - constant GCR flux
- GCR energies peak around 0.1-1 GeV/n
- Neutrons produced in fragmentation reactions with target material (shielding / tissue)
- Secondaries cause heavier GCR components to have similar dosimetric contribution to lighter components, despite decreased abundance.
- Ion therapy sees similar ion species, energies, and target materials of interest.

Why is knowledge of these secondary neutrons important?

- With increasing shielding thicknesses, neutrons become increasingly prevalent contributors to astronaut dose.

Rise primarily attributable to increased neutron production, particularly from “back wall” of spacecraft.
Why is knowledge of these secondary neutrons important?

› With increasing shielding thicknesses, neutrons become increasingly prevalent contributors to astronaut dose.
› MSL-RAD (detector onboard the Curiosity rover) observed dose equivalent rates of:
 › 1.84 mSv/day in transit [3]
 › 0.64 mSv/day on the surface [4]
› A realistic manned mission would result in exposure close to or exceeding career limits.

Rise primarily attributable to increased neutron production, particularly from “back wall” of spacecraft

Simulated dose equivalent as a function of Al shielding thickness in an enclosed environment [2]
Why is knowledge of these secondary neutrons important?

› With increasing shielding thicknesses, neutrons become increasingly prevalent contributors to astronaut dose.

› MSL-RAD (detector onboard the Curiosity rover) observed dose equivalent rates of:
 › 1.84 mSv/day in transit [3]
 › 0.64 mSv/day on the surface [4]

› A realistic manned mission would result in exposure close to or exceeding career limits.

› Understanding GCR-produced neutrons is crucial for the future of space exploration!

Rise primarily attributable to increased neutron production, particularly from “back wall” of spacecraft
Why is knowledge of these secondary neutrons important?

› With increasing shielding thicknesses, neutrons become increasingly prevalent contributors to astronaut dose.

› MSL-RAD (detector onboard the Curiosity rover) observed dose equivalent rates of:
 › 1.84 mSv/day in transit [3]
 › 0.64 mSv/day on the surface [4]

› A realistic manned mission would result in exposure close to or exceeding career limits.

› Understanding GCR-produced neutrons is crucial for the future of space exploration!

› These neutrons are also important for ion therapy doses and proposed range verification and imaging systems [5].

What data on secondary neutrons is currently available?

› Both angular & energy dependencies are important since neutrons can scatter at large angles.

› 2 primary categories of interest:

› Double-differential cross sections $\frac{d^2\sigma}{dE d\Omega}$

› Thin target to isolate single interactions
 › Known E_{beam} inducing every reaction

› Double-differential (thick target) yields $\frac{d^2Y}{dE d\Omega}$

› Neutrons produced from a large variety of reactions and energies in thick targets
 › Primary beam at E_{beam} and lower
 › Further secondary reactions

What data on secondary neutrons is currently available?

› Both angular & energy dependencies are important since neutrons can scatter at large angles.

› 2 primary categories of interest:

› Double-differential cross sections $\frac{d^2 \sigma}{dE d\Omega}$

› Thin target to isolate single interactions
 › Known E_{beam} inducing every reaction

› Most valuable data for comparison with theoretical models [6]

› In theory, can be used to derive single-differential and total cross sections

› Double-differential (thick target) yields $\frac{d^2 Y}{dE d\Omega}$

› Neutrons produced from a large variety of reactions and energies in thick targets
 › Primary beam at E_{beam} and lower
 › Further secondary reactions

What data on secondary neutrons is currently available?

› Both angular & energy dependencies are important since neutrons can scatter at large angles.
› 2 primary categories of interest:
 › Double-differential cross sections $\frac{d^2\sigma}{dE_d\Omega}$
 › Thin target to isolate single interactions
 › Known E_{beam} inducing every reaction
 › Most valuable data for comparison with theoretical models [6]
› In theory, can be used to derive single-differential and total cross sections
› More challenging to achieve sufficient statistics due to necessity of thin targets

› Double-differential (thick target) yields $\frac{d^2Y}{dE_d\Omega}$
› Neutrons produced from a large variety of reactions and energies in thick targets
 › Primary beam at E_{beam} and lower
 › Further secondary reactions

What data on secondary neutrons is currently available?

- Both angular & energy dependencies are important since neutrons can scatter at large angles.
- 2 primary categories of interest:
 - Double-differential cross sections $\frac{d^2\sigma}{dEd\Omega}$
 - Thin target to isolate single interactions
 - Known E_{beam} inducing every reaction
 - Most valuable data for comparison with theoretical models [6]
 - In theory, can be used to derive single-differential and total cross sections
 - More challenging to achieve sufficient statistics due to necessity of thin targets
 - Double-differential (thick target) yields $\frac{d^2Y}{dEd\Omega}$
 - Neutrons produced from a large variety of reactions and energies in thick targets
 - Primary beam at E_{beam} and lower
 - Further secondary reactions
 - Allow for comprehensive test of physics models within transport codes
 - Difficult/impossible to correlate specific reactions & their products with confidence

What data on secondary neutrons is currently available?

- Both angular & energy dependencies are important since neutrons can scatter at large angles.
- 2 primary categories of interest:
 - Double-differential cross sections \(\frac{d^2\sigma}{dEd\Omega} \)
 - Thin target to isolate single interactions
 - Known \(E_{\text{beam}} \) inducing every reaction
 - Most valuable data for comparison with theoretical models [6]
 - In theory, can be used to derive single-differential and total cross sections
 - More challenging to achieve sufficient statistics due to necessity of thin targets
- Double-differential (thick target) yields \(\frac{d^2Y}{dEd\Omega} \)
- Neutrons produced from a large variety of reactions and energies in thick targets
 - Primary beam at \(E_{\text{beam}} \) and lower
 - Further secondary reactions
- Allow for comprehensive test of physics models within transport codes
- Difficult/impossible to correlate specific reactions & their products with confidence
- More target \(\rightarrow \) more interactions \(\rightarrow \) more secondaries \(\rightarrow \) better statistics

Experiments have measured neutron $\frac{d^2\sigma}{dE d\Omega}$ at a variety of angles for a moderate number of heavy ions of various species and energies incident on different targets.

*Non-exhaustive, contains the collections of datasets reviewed in [7]

Current state of relevant secondary neutron cross section data*

- Experiments have measured neutron $\frac{d^2\sigma}{dEd\Omega}$ at a variety of angles for a moderate number of heavy ions of various species and energies incident on different targets.

*Non-exhaustive, contains the collections of datasets reviewed in [7]

Current state of relevant secondary neutron cross section data*

- Experiments have measured neutron $\frac{d^2\sigma}{dE d\Omega}$ at a variety of angles for a moderate number of heavy ions of various species and energies incident on different targets.
- Heavier ions represented at mid/higher E

*Non-exhaustive, contains the collections of datasets reviewed in [7]

Current state of relevant secondary neutron cross section data*

› Experiments have measured neutron $\frac{d^2\sigma}{dE d\Omega}$ at a variety of angles for a moderate number of heavy ions of various species and energies incident on different targets.

› Heavier ions represented at mid/higher E

*Non-exhaustive, contains the collections of datasets reviewed in [7]

Current state of relevant secondary neutron cross section data*

› Experiments have measured neutron $\frac{d^2\sigma}{dE d\Omega}$ at a variety of angles for a moderate number of heavy ions of various species and energies incident on different targets.

› Heavier ions represented at mid/higher E

*Non-exhaustive, contains the collections of datasets reviewed in [7]

Experiments have measured neutron $\frac{d^2\sigma}{dEd\Omega}$ at a variety of angles for a moderate number of heavy ions of various species and energies incident on different targets.

Heavier ions represented at mid/higher E

*Non-exhaustive, contains the collections of datasets reviewed in [7]

Current state of relevant secondary neutron cross section data*

- Experiments have measured neutron $\frac{d^2\sigma}{dEd\Omega}$ at a variety of angles for a moderate number of heavy ions of various species and energies incident on different targets.
- Heavier ions represented at mid/higher E

*Non-exhaustive, contains the collections of datasets reviewed in [7]

Current state of relevant secondary neutron cross section data*

- Experiments have measured neutron $\frac{d^2\sigma}{dEd\Omega}$ at a variety of angles for a moderate number of heavy ions of various species and energies incident on different targets.
- Heavier ions represented at mid/higher E

*Non-exhaustive, contains the collections of datasets reviewed in [7]

Current state of relevant secondary neutron cross section data*

- Experiments have measured neutron $\frac{d^2\sigma}{dE d\Omega}$ at a variety of angles for a moderate number of heavy ions of various species and energies incident on different targets.
- Heavier ions represented at mid/higher E
- Ar, Ne, and C ions well sampled

*Non-exhaustive, contains the collections of datasets reviewed in [7]

Current state of relevant secondary neutron cross section data*

- Experiments have measured neutron $\frac{d^2\sigma}{dE d\Omega}$ at a variety of angles for a moderate number of heavy ions of various species and energies incident on different targets.
- Heavier ions represented at mid/higher E
- Ar, Ne, and C ions well sampled

*Non-exhaustive, contains the collections of datasets reviewed in [7]

Current state of relevant secondary neutron cross section data*

- Experiments have measured neutron $\frac{d^2\sigma}{dE d\Omega}$ at a variety of angles for a moderate number of heavy ions of various species and energies incident on different targets.
- Heavier ions represented at mid/higher E
- Ar, Ne, and C ions well sampled

*Non-exhaustive, contains the collections of datasets reviewed in [7]

Current state of relevant secondary neutron cross section data*

› Experiments have measured neutron $\frac{d^2\sigma}{dE d\Omega}$ at a variety of angles for a moderate number of heavy ions of various species and energies incident on different targets.
› Heavier ions represented at mid/higher E
› Ar, Ne, and C ions well sampled

*Non-exhaustive, contains the collections of datasets reviewed in [7]

Note: random spread added solely for visibility
Experiments have measured neutron $\frac{d^2 \sigma}{dEd\Omega}$ at a variety of angles for a moderate number of heavy ions of various species and energies incident on different targets.

- Heavier ions represented at mid/higher E
- Ar, Ne, and C ions well sampled

*Non-exhaustive, contains the collections of datasets reviewed in [7]

Current state of relevant secondary neutron cross section data*

- Experiments have measured neutron \(\frac{d^2\sigma}{dEd\Omega} \) at a variety of angles for a moderate number of heavy ions of various species and energies incident on different targets.
- Heavier ions represented at mid/higher E
- Ar, Ne, and C ions well sampled

*Non-exhaustive, contains the collections of datasets reviewed in [7]

Current state of relevant secondary neutron cross section data*

› Experiments have measured neutron $\frac{d^2\sigma}{dEd\Omega}$ at a variety of angles for a moderate number of heavy ions of various species and energies incident on different targets.

› Heavier ions represented at mid/higher E

› Ar, Ne, and C ions well sampled

*Non-exhaustive, contains the collections of datasets reviewed in [7]

Current state of relevant secondary neutron cross section data*

- Experiments have measured neutron $\frac{d^2\sigma}{dEd\Omega}$ at a variety of angles for a moderate number of heavy ions of various species and energies incident on different targets.
- Heavier ions represented at mid/higher E
- Ar, Ne, and C ions well sampled

*Non-exhaustive, contains the collections of datasets reviewed in [7]

Current state of relevant secondary neutron cross section data*

- Experiments have measured neutron $\frac{d^2\sigma}{dEd\Omega}$ at a variety of angles for a moderate number of heavy ions of various species and energies incident on different targets.
- Heavier ions represented at mid/higher E
- Ar, Ne, and C ions well sampled
- Only lower E He ion measurements exist

*Non-exhaustive, contains the collections of datasets reviewed in [7]

Current state of relevant secondary neutron cross section data*

- Experiments have measured neutron $\frac{d^2\sigma}{dE d\Omega}$ at a variety of angles for a moderate number of heavy ions of various species and energies incident on different targets.
- Heavier ions represented at mid/higher E
- Ar, Ne, and C ions well sampled
- Only lower E He ion measurements exist

*Non-exhaustive, contains the collections of datasets reviewed in [7]

Current state of relevant secondary neutron cross section data*

› Experiments have measured neutron $\frac{d^2\sigma}{dEd\Omega}$ at a variety of angles for a moderate number of heavy ions of various species and energies incident on different targets.
› Heavier ions represented at mid/higher E
› Ar, Ne, and C ions well sampled
› Only lower E He ion measurements exist
› C and Al targets well sampled
› Targets containing O, H, and Fe not very well / not at all represented

*Non-exhaustive, contains the collections of datasets reviewed in [7]

Current state of relevant secondary neutron yield data*

- Experiments have measured neutron \(\frac{d^2Y}{dE d\Omega} \) at a variety of angles for a moderate number of heavy ions of various species and energies incident on different targets.

- Note: 800 & 1500 MeV/n He/C/Si/Fe beams on Al/HDPE/Al+HDPE from NSRL campaign, 1 GeV/n C on Fe, and 800 MeV/n Si on C/Cu, along with a few higher detection angles, are off plotted scale.

*Non-exhaustive, contains the collections of datasets reviewed/contained in [7,8,9]

Current state of relevant secondary neutron yield data*

› Experiments have measured neutron $\frac{d^2Y}{dEd\Omega}$ at a variety of angles for a moderate number of heavy ions of various species and energies incident on different targets.

› Note: 800 & 1500 MeV/n He/C/Si/Fe beams on Al/HDPE/Al+HDPE from NSRL campaign, 1 GeV/n C on Fe, and 800 MeV/n Si on C/Cu, along with a few higher detection angles, are off plotted scale.

*Non-exhaustive, contains the collections of datasets reviewed/contained in [7,8,9]

Note: random spread added solely for visibility
Experiments have measured neutron $\frac{d^2Y}{dE\,d\Omega}$ at a variety of angles for a moderate number of heavy ions of various species and energies incident on different targets.

Note: 800 & 1500 MeV/n He/C/Si/Fe beams on Al/HDPE/Al+HDPE from NSRL campaign, 1 GeV/n C on Fe, and 800 MeV/n Si on C/Cu, along with a few higher detection angles, are off plotted scale.

Heavier ions well represented at 400 MeV/n (and some higher E) for a variety of targets.

*Non-exhaustive, contains the collections of datasets reviewed/contained in [7,8,9]

Current state of relevant secondary neutron yield data*

› Experiments have measured neutron $\frac{d^2Y}{dEd\Omega}$ at a variety of angles for a moderate number of heavy ions of various species and energies incident on different targets.

› Note: 800 & 1500 MeV/n He/C/Si/Fe beams on Al/HDPE/Al+HDPE from NSRL campaign, 1 GeV/n C on Fe, and 800 MeV/n Si on C/Cu, along with a few higher detection angles, are off plotted scale.

› Heavier ions well represented at 400 MeV/n (and some higher E) for a variety of targets

*Non-exhaustive, contains the collections of datasets reviewed/contained in [7,8,9]

Current state of relevant secondary neutron yield data*

› Experiments have measured neutron $\frac{d^2Y}{dEd\Omega}$ at a variety of angles for a moderate number of heavy ions of various species and energies incident on different targets.

› Note: 800 & 1500 MeV/n He/C/Si/Fe beams on Al/HDPE/Al+HDPE from NSRL campaign, 1 GeV/n C on Fe, and 800 MeV/n Si on C/Cu, along with a few higher detection angles, are off plotted scale.

› Heavier ions well represented at 400 MeV/n (and some higher E) for a variety of targets

*Non-exhaustive, contains the collections of datasets reviewed/contained in [7,8,9]

Current state of relevant secondary neutron yield data*

› Experiments have measured neutron $\frac{d^2Y}{dEd\Omega}$ at a variety of angles for a moderate number of heavy ions of various species and energies incident on different targets.

› Note: 800 & 1500 MeV/n He/C/Si/Fe beams on Al/HDP/E/Ai+HDP/E from NSRL campaign, 1 GeV/n C on Fe, and 800 MeV/n Si on C/Cu, along with a few higher detection angles, are off plotted scale.

› Heavier ions well represented at 400 MeV/n (and some higher E) for a variety of targets

*Non-exhaustive, contains the collections of datasets reviewed/contained in [7,8,9]

Note: random spread added solely for visibility
Current state of relevant secondary neutron yield data*

- Experiments have measured neutron $\frac{d^2Y}{dEd\Omega}$ at a variety of angles for a moderate number of heavy ions of various species and energies incident on different targets.
- Note: 800 & 1500 MeV/n He/C/Si/Fe beams on Al/HDPE/Al+HDPE from NSRL campaign, 1 GeV/n C on Fe, and 800 MeV/n Si on C/Cu, along with a few higher detection angles, are off plotted scale.
- Heavier ions well represented at 400 MeV/n (and some higher E) for a variety of targets.

*Non-exhaustive, contains the collections of datasets reviewed/contained in [7,8,9]

Experiments have measured neutron $\frac{d^2Y}{dEd\Omega}$ at a variety of angles for a moderate number of heavy ions of various species and energies incident on different targets.

Note: 800 & 1500 MeV/n He/C/Si/Fe beams on Al/HDPE/Al+HDPE from NSRL campaign, 1 GeV/n C on Fe, and 800 MeV/n Si on C/Cu, along with a few higher detection angles, are off plotted scale.

Heavier ions well represented at 400 MeV/n (and some higher E) for a variety of targets.

*Non-exhaustive, contains the collections of datasets reviewed/contained in [7,8,9]

Current state of relevant secondary neutron yield data*

- Experiments have measured neutron $\frac{d^2Y}{dEd\Omega}$ at a variety of angles for a moderate number of heavy ions of various species and energies incident on different targets.

- Note: 800 & 1500 MeV/n He/C/Si/Fe beams on Al/HDPE/Al+HDPE from NSRL campaign, 1 GeV/n C on Fe, and 800 MeV/n Si on C/Cu, along with a few higher detection angles, are off plotted scale.

- Heavier ions well represented at 400 MeV/n (and some higher E) for a variety of targets

*Non-exhaustive, contains the collections of datasets reviewed/contained in [7,8,9]

Note: random spread added solely for visibility
Experiments have measured neutron $\frac{d^2Y}{dEd\Omega}$ at a variety of angles for a moderate number of heavy ions of various species and energies incident on different targets.

Note: 800 & 1500 MeV/n He/C/Si/Fe beams on Al/HDPE/Al+HDPE from NSRL campaign, 1 GeV/n C on Fe, and 800 MeV/n Si on C/Cu, along with a few higher detection angles, are off plotted scale.

Heavier ions well represented at 400 MeV/n (and some higher E) for a variety of targets.
Current state of relevant secondary neutron yield data*

- Experiments have measured neutron $\frac{d^2Y}{dEd\Omega}$ at a variety of angles for a moderate number of heavy ions of various species and energies incident on different targets.

- Note: 800 & 1500 MeV/n He/C/Si/Fe beams on Al/HDPE/Al+HDPE from NSRL campaign, 1 GeV/n C on Fe, and 800 MeV/n Si on C/Cu, along with a few higher detection angles, are off plotted scale.

- Heavier ions well represented at 400 MeV/n (and some higher E) for a variety of targets

*Non-exhaustive, contains the collections of datasets reviewed/contained in [7,8,9]

Current state of relevant secondary neutron yield data*

- Experiments have measured neutron $\frac{d^2Y}{dEd\Omega}$ at a variety of angles for a moderate number of heavy ions of various species and energies incident on different targets.
- Note: 800 & 1500 MeV/n He/C/Si/Fe beams on Al/HDPE/Al+HDPE from NSRL campaign, 1 GeV/n C on Fe, and 800 MeV/n Si on C/Cu, along with a few higher detection angles, are off plotted scale.
- Heavier ions well represented at 400 MeV/n (and some higher E) for a variety of targets

*Non-exhaustive, contains the collections of datasets reviewed/contained in [7,8,9]

Current state of relevant secondary neutron yield data*

- Experiments have measured neutron \(\frac{d^2Y}{dEd\Omega} \) at a variety of angles for a moderate number of heavy ions of various species and energies incident on different targets.
- Note: 800 & 1500 MeV/n He/C/Si/Fe beams on Al/HDPE/Al+HDPE from NSRL campaign, 1 GeV/n C on Fe, and 800 MeV/n Si on C/Cu, along with a few higher detection angles, are off plotted scale.
- Heavier ions well represented at 400 MeV/n (and some higher E) for a variety of targets
- Ne & C \(\rightarrow \) plenty of targets in 100-400 MeV/n

*Non-exhaustive, contains the collections of datasets reviewed/contained in [7,8,9]

Current state of relevant secondary neutron yield data*

- Experiments have measured neutron $\frac{d^2Y}{dEd\Omega}$ at a variety of angles for a moderate number of heavy ions of various species and energies incident on different targets.
- Note: 800 & 1500 MeV/n He/C/Si/Fe beams on Al/HDPE/Al+HDPE from NSRL campaign, 1 GeV/n C on Fe, and 800 MeV/n Si on C/Cu, along with a few higher detection angles, are off plotted scale.
- Heavier ions well represented at 400 MeV/n (and some higher E) for a variety of targets
- Ne & C \rightarrow plenty of targets in 100-400 MeV/n

*Non-exhaustive, contains the collections of datasets reviewed/contained in [7,8,9]

Note: random spread added solely for visibility
Current state of relevant secondary neutron yield data*

- Experiments have measured neutron $\frac{d^2Y}{dE d\Omega}$ at a variety of angles for a moderate number of heavy ions of various species and energies incident on different targets.
- Note: 800 & 1500 MeV/n He/C/Si/Fe beams on Al/HDPE/Al+HDPE from NSRL campaign, 1 GeV/n C on Fe, and 800 MeV/n Si on C/Cu, along with a few higher detection angles, are off plotted scale.
- Heavier ions well represented at 400 MeV/n (and some higher E) for a variety of targets.
- Ne & C \rightarrow plenty of targets in 100-400 MeV/n

*Non-exhaustive, contains the collections of datasets reviewed/contained in [7,8,9]

Note: random spread added solely for visibility.
Current state of relevant secondary neutron yield data*

Experiments have measured neutron $\frac{d^2Y}{dEd\Omega}$ at a variety of angles for a moderate number of heavy ions of various species and energies incident on different targets.

- Note: 800 & 1500 MeV/n He/C/Si/Fe beams on Al/HDPE/Al+HDPE from NSRL campaign, 1 GeV/n C on Fe, and 800 MeV/n Si on C/Cu, along with a few higher detection angles, are off plotted scale.
- Heavier ions well represented at 400 MeV/n (and some higher E) for a variety of targets
- Ne & C → plenty of targets in 100-400 MeV/n

*Non-exhaustive, contains the collections of datasets reviewed/contained in [7,8,9]

Note: random spread added solely for visibility
Current state of relevant secondary neutron yield data*

- Experiments have measured neutron $\frac{d^2Y}{dEd\Omega}$ at a variety of angles for a moderate number of heavy ions of various species and energies incident on different targets.
- Note: 800 & 1500 MeV/n He/C/Si/Fe beams on Al/HDPE/Al+HDPE from NSRL campaign, 1 GeV/n C on Fe, and 800 MeV/n Si on C/Cu, along with a few higher detection angles, are off plotted scale.
- Heavier ions well represented at 400 MeV/n (and some higher E) for a variety of targets
- Ne & C \rightarrow plenty of targets in 100-400 MeV/n
- He well studied below 250 MeV, only measured at a few energies for a few targets at higher E

*Non-exhaustive, contains the collections of datasets reviewed-contained in [7,8,9]

Current state of relevant secondary neutron yield data*

- Experiments have measured neutron $\frac{d^2Y}{dEd\Omega}$ at a variety of angles for a moderate number of heavy ions of various species and energies incident on different targets.
- Note: 800 & 1500 MeV/n He/C/Si/Fe beams on Al/HDPE/Al+HDPE from NSRL campaign, 1 GeV/n C on Fe, and 800 MeV/n Si on C/Cu, along with a few higher detection angles, are off plotted scale.
- Heavier ions well represented at 400 MeV/n (and some higher E) for a variety of targets
- Ne & C → plenty of targets in 100-400 MeV/n
- He well studied below 250 MeV, only measured at a few energies for a few targets at higher E

*Non-exhaustive, contains the collections of datasets reviewed/contained in [7,8,9]

Current state of relevant secondary neutron yield data*

- Experiments have measured neutron $\frac{d^2Y}{dEd\Omega}$ at a variety of angles for a moderate number of heavy ions of various species and energies incident on different targets.
- Note: 800 & 1500 MeV/n He/C/Si/Fe beams on Al/HDPE/Al+HDPE from NSRL campaign, 1 GeV/n C on Fe, and 800 MeV/n Si on C/Cu, along with a few higher detection angles, are off plotted scale.
- Heavier ions well represented at 400 MeV/n (and some higher E) for a variety of targets
- Ne & C → plenty of targets in 100-400 MeV/n
- He well studied below 250 MeV, only measured at a few energies for a few targets at higher E
- H is quite well studied across the board

*Non-exhaustive, contains the collections of datasets reviewed/contained in [7,8,9]

Note: random spread added solely for visibility
Experiments have measured neutron $\frac{d^2Y}{dEd\Omega}$ at a variety of angles for a moderate number of heavy ions of various species and energies incident on different targets.

Note: 800 & 1500 MeV/n He/C/Si/Fe beams on Al/HDPE/Al+HDPE from NSRL campaign, 1 GeV/n C on Fe, and 800 MeV/n Si on C/Cu, along with a few higher detection angles, are off plotted scale.

Heavier ions well represented at 400 MeV/n (and some higher E) for a variety of targets

Ne & C \rightarrow plenty of targets in 100-400 MeV/n

He well studied below 250 MeV, only measured at a few energies for a few targets at higher E

H is quite well studied across the board

*Non-exhaustive, contains the collections of datasets reviewed/contained in [7,8,9]

What future measurements should be prioritized?

› Since data gaps/uncertainties drive model uncertainties, reducing these should be prioritized.
› While yield measurements are good for validating models as a whole, individual reaction-level data found in double-differential cross section measurements are needed to inform the models.
What future measurements should be prioritized?

› Since data gaps/uncertainties drive model uncertainties, reducing these should be prioritized

› While yield measurements are good for validating models as a whole, individual reaction-level data found in double-differential cross section measurements are needed to inform the models

› Beams of interest are the most significant GCRs: H, He, C, O, Si, Fe
 › H beams are well-measured and are best represented in models already
 › Of the remainder, C and Fe beams have been measured for some materials and energies
What future measurements should be prioritized?

› Since data gaps/uncertainties drive model uncertainties, reducing these should be prioritized
› While yield measurements are good for validating models as a whole, individual reaction-level data found in double-differential cross section measurements are needed to inform the models
› Beams of interest are the most significant GCRs: H, He, C, O, Si, Fe
 › H beams are well-measured and are best represented in models already
 › Of the remainder, C and Fe beams have been measured for some materials and energies
 › High energy (>250 MeV/n) He measurements are absent
 › Abundant GCR and dosimetrically significant for largest range of shielding thicknesses
What future measurements should be prioritized?

› Since data gaps/uncertainties drive model uncertainties, reducing these should be prioritized
› While yield measurements are good for validating models as a whole, individual reaction-level data found in double-differential cross section measurements are needed to inform the models
› Beams of interest are the most significant GCRs: H, He, C, O, Si, Fe
 › H beams are well-measured and are best represented in models already
 › Of the remainder, C and Fe beams have been measured for some materials and energies
 › High energy (>250 MeV/n) He measurements are absent
 › Abundant GCR and dosimetrically significant for largest range of shielding thicknesses
› Targets of interest include those prominent in spacecraft/biology: H, C, O, Ca, Al, Fe
What future measurements should be prioritized?

- Since data gaps/uncertainties drive model uncertainties, reducing these should be prioritized.
- While yield measurements are good for validating models as a whole, individual reaction-level data found in double-differential cross section measurements are needed to inform the models.
- Beams of interest are the most significant GCRs: H, He, C, O, Si, Fe
 - H beams are well-measured and are best represented in models already.
 - Of the remainder, C and Fe beams have been measured for some materials and energies.
 - High energy (>250 MeV/n) He measurements are absent.
 - Abundant GCR and dosimetrically significant for largest range of shielding thicknesses.
- Targets of interest include those prominent in spacecraft/biology: H, C, O, Ca, Al, Fe.
- Existing cross section measurements have minimum neutron energies from 3 MeV to 20 MeV.
 - Further knowledge of the production of lower-E neutrons is desirable.
Thank you!
Dose by secondary vs shielding thickness for He component of GCR

Dose to BFO by primary/secondary Z for various geometries

FIGURE 8 | Effective dose contributions as a function of external GCR energy behind 20 g/cm² of aluminum exposed to solar minimum GCR. Reprinted from Slaba and Blattner [46].

Dose attributed to GCR He by energy slice vs Al shielding thickness

[FIGURE 11] GCR He energy ranges contributing to the 1 year NASA male effective dose for different thickness, using fluence to dose conversion factors from ICRP Publication 123.