Benchmarking the accuracy of (n,n'γ) cross section libraries

Application to Planetary Nuclear Spectroscopy

Patrick N. Peplowski¹, Jack T. Wilson¹, Mauricio Ayllon-Unzueta²
¹ Johns Hopkins Applied Physics Laboratory, Laurel MD USA
² Goddard Space Flight Center, Greenbelt MD USA

Workshop for Applied Nuclear Data Activities
2 March 2022
Introduction to planetary nuclear spectroscopy
Historical Context

• Completed/Active Investigations
 - Apollo 15 and 16 (USA)
 - Near-Earth Asteroid Rendezvous (USA)
 - Lunar Prospector (USA)
 - Mars Odyssey (USA)
 - Kaguya (Japan)
 - Chang’E (China)
 - MESSENGER (USA)
 - Lunar Reconnaissance Orbiter (USA/Russia)
 - Mars Science Laboratory (USA/Russia)
 - Mars Trace Gas Orbiter (Europe/Russia)
 - BepiColumbo (Europe/Russia/Japan)

• Upcoming Investigations:
 - LunaH Map (USA)
 - Psyche (USA)
 - MMX (Japan/USA)
 - Dragonfly (USA)
 - Commercial Lunar Payload Services (multiple payloads/missions)

Nuclear spectroscopy is an active, vibrant field in planetary science.

NASA currently has numerous active and upcoming investigations valued at >$100M.
“A broader suite of benchmarks are needed to provide more complete validation of nuclear data and physics important for a broad range of applications.”
- WANDA 2021 Report
Benchmarking Experiment

• Measure gamma-ray emissions from neutron-irradiated samples of materials relevant for planetary neutron spectroscopy.
 - 99.9+% pure element samples
 - 252Cf source, 3×10^5 n/s
 - Long (multi-day) measurements to maximize statistics

• Simple, easy-to-model measurement geometry
 - Low-mass sample cup, ~20-cm above gamma-ray sensor
 - HPGe detector w/ same size as four NASA flight instruments

• Frequent measurements of backgrounds
 - Neutron interactions w/ HPGe sensor, housing, measured weekly.

“Benchmarks are models of well-characterized experiments for which experimental uncertainties and the biases and uncertainties of any geometry and material simplifications have been assessed.”

- WANDA 2021 Report
Neutron Source

- 252Cf provides a similar neutron flux to that at the near-surface as produced by cosmic rays.
- Uncertainties in the 252Cf neutron emission spectrum are expected to be well below the uncertainties of the gamma-ray measurements.
- A byproduct of using 252Cf is copious gamma rays from fission daughters.
 - Background measurements and spectral subtraction are required to remove these gamma rays.

"More benchmark experiments should be performed that are similar to the Baghdad Atlas in purpose, but that have improved technology and characterization and that have fluxes similar to the application flux."

- WANDA 2021 Report
“Difference” measurements (sample – background) provide clean spectra with gamma-ray peaks that are exclusively from the \((n,n'\gamma)\) reactions of interest.
Geant4 Simulations

- Geant4 simulations (see right panel of figure) include the detector, its housing, 3-D printed plastic parts, the sample, and the Cf source housing.

- For each simulation, all physics selections are identical except the neutron cross section library.
 - We used the following libraries for this study:
 - Geant4 Neutron Data Library:
 - G4NDL 4.6, G4NDL 4.5
 - Evaluated Nuclear Data Files:
 - ENDF VIII.0, ENDF VII.1, & ENDF VI
 - Japanese Evaluated Nuclear Data Library:
 - JENDL 4.0 & 3.3
 - Chinese Evaluated Nuclear Data Library
 - CENDL 3.1
 - Russian neutron data library:
 - BROND 3.1 & 2.2
Model-to-measurement comparison

Si 1778-keV Gamma Ray

Cross Section Library
Subset of the model-to-measurement comparison

No acceptable cross section library (agreement for two separate measurements)

Two acceptable cross section libraries (G4NDL 4.6, ENDF VI)

One acceptable cross section library (ENDF VIII), agreement for multiple gamma-ray emission peaks
Summary Results

<table>
<thead>
<tr>
<th>Gamma Ray (keV)</th>
<th>G4NDL 4.6</th>
<th>G4NDL 4.5</th>
<th>ENDF VIII</th>
<th>ENDF VII</th>
<th>ENDF VI</th>
<th>JENDL 4.0</th>
<th>JENDL 3.3</th>
<th>CENDL 3.1</th>
<th>BROND 3.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>H 2223</td>
<td>1.45±0.01</td>
<td>1.47±0.01</td>
<td>1.44±0.01</td>
<td>1.47±0.01</td>
<td>1.45±0.01</td>
<td>1.44±0.01</td>
<td>1.46±0.01</td>
<td>1.46±0.01</td>
<td>1.45±0.01</td>
</tr>
<tr>
<td>O 6129</td>
<td>0.78±0.06</td>
<td>0.71±0.05</td>
<td>0.05±0.01</td>
<td>–</td>
<td>–</td>
<td>0.71±0.05</td>
<td>0.70±0.05</td>
<td>0.70±0.70</td>
<td>0.06±0.01</td>
</tr>
<tr>
<td>Na 440</td>
<td>1.13±0.03</td>
<td>0.45±0.01</td>
<td>0.25±0.01</td>
<td>0.25±0.01</td>
<td>0.25±0.01</td>
<td>1.26±0.03</td>
<td>1.26±0.03</td>
<td>–</td>
<td>1.17±0.03</td>
</tr>
<tr>
<td>Mg 1369</td>
<td>1.42±0.02</td>
<td>1.42±0.02</td>
<td>1.38±0.07</td>
<td>1.39±0.07</td>
<td>0.00±0.00</td>
<td>1.44±0.07</td>
<td>1.42±0.06</td>
<td>0.86±0.02</td>
<td>1.44±0.07</td>
</tr>
<tr>
<td>Al 843</td>
<td>1.22±0.01</td>
<td>1.07±0.01</td>
<td>1.09±0.01</td>
<td>1.10±0.01</td>
<td>1.11±0.01</td>
<td>1.09±0.06</td>
<td>1.05±0.01</td>
<td>1.05±0.01</td>
<td>1.11±0.01</td>
</tr>
<tr>
<td>Si 1779</td>
<td>1.05±0.02</td>
<td>1.12±0.02</td>
<td>1.13±0.02</td>
<td>1.13±0.02</td>
<td>1.13±0.02</td>
<td>0.07±0.00</td>
<td>1.07±0.02</td>
<td>1.13±0.02</td>
<td>1.13±0.02</td>
</tr>
<tr>
<td>S 2232</td>
<td>1.31±0.01</td>
<td>0.78±0.01</td>
<td>–</td>
<td>0.78±0.01</td>
<td>0.80±0.01</td>
<td>0.79±0.01</td>
<td>0.79±0.01</td>
<td>–</td>
<td>0.80±0.01</td>
</tr>
<tr>
<td>Cl 1763</td>
<td>0.99±0.01</td>
<td>1.02±0.01</td>
<td>1.03±0.01</td>
<td>1.02±0.01</td>
<td>1.02±0.01</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>1.10±0.02</td>
</tr>
<tr>
<td>Ca 3736</td>
<td>1.00±0.04</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>0.06±0.01</td>
<td>–</td>
<td>–</td>
<td>1.12±0.04</td>
<td>0.04±0.01</td>
</tr>
<tr>
<td>Ti 983</td>
<td>1.07±0.03</td>
<td>1.06±0.03</td>
<td>1.06±0.03</td>
<td>1.09±0.06</td>
<td>–</td>
<td>1.12±0.06</td>
<td>1.10±0.06</td>
<td>1.07±0.06</td>
<td>1.06±0.06</td>
</tr>
<tr>
<td>Fe 846</td>
<td>1.04±0.01</td>
<td>1.11±0.01</td>
<td>1.16±0.01</td>
<td>1.11±0.01</td>
<td>1.11±0.01</td>
<td>1.12±0.01</td>
<td>1.12±0.01</td>
<td>1.06±0.01</td>
<td>1.24±0.03</td>
</tr>
<tr>
<td>Co 1099</td>
<td>1.28±0.04</td>
<td>1.30±0.04</td>
<td>0.93±0.04</td>
<td>–</td>
<td>–</td>
<td>0.88±0.04</td>
<td>–</td>
<td>0.84±0.05</td>
<td>0.86±0.02</td>
</tr>
<tr>
<td>Ni 1332</td>
<td>1.04±0.04</td>
<td>1.23±0.05</td>
<td>1.04±0.04</td>
<td>1.21±0.05</td>
<td>1.13±0.04</td>
<td>0.97±0.04</td>
<td>0.97±0.04</td>
<td>1.05±0.04</td>
<td>1.02±0.04</td>
</tr>
<tr>
<td>Ni 1454</td>
<td>0.87±0.06</td>
<td>0.87±0.06</td>
<td>1.01±0.06</td>
<td>0.86±0.06</td>
<td>0.85±0.05</td>
<td>0.71±0.05</td>
<td>0.72±0.05</td>
<td>0.99±0.06</td>
<td>0.84±0.06</td>
</tr>
</tbody>
</table>

Model Accuracy

- **Within 5%**
- **Within 5-10%**
- **Within 10-20%**
- **Diff. >20%**

"-" = No Peak in Model
We can build a hybrid library to meet many of our needs. However, there are no acceptable options for H, O, Na, Mg, and S.
Confirmation with MCNP

- Preliminary results suggest MCNP and Geant4 produce similar results.
 - MCNP result requires an arbitrary normalization that is not present for Geant4
 - MCNP has access to fewer neutron cross section libraries than Geant4.

- We’ve completed MCNP modeling for the iron sample measurements.
 - Used ENDF VII.1 and ENDF VI.8
 - Additional sample simulations in progress.

- The consistency between Geant4 and MCNP shown here suggests the measurement to model discrepancy is due to the neutron cross section libraries.
Summary

“Benchmark experiments that primarily test radiative capture \((n,\gamma)\) and inelastic scattering \((n,n'\gamma)\) reaction data would be the most useful for these varied applications. [...] Measurements of gamma spectra would be ideal.”

- WANDA 2021 Report

- We have conducted a series of experiments designed to provide a robust benchmark for \((n,n'\gamma)\) reactions.
 - Experiments included element standards for O, Na, Mg, Al, Si, S, Cl, Ca, Ti, Fe, Co, and Ni

- The accuracy of the simulations varies strongly as a function of which neutron inelastic cross section library is used.
 - There is no single best-choice cross section library
 - For many elements (O, Na, Mg, S), there is no acceptable library choice for planetary nuclear spectroscopy experiments

- We would like to work with the neutron library developers to improve future versions of the library for our application.
 - Accurate cross sections for gamma-ray production from \((n,n'\gamma)\) reactions is not always the priority for neutron library efforts.
Backup slides

• Measurements, and simulation-to-measurement comparisons for each element of interested are included in the following slides.
Hydrogen – 2223-keV gamma ray

Note that, unlike all other peaks in this study, this is from neutron radiative capture reaction H(n,γ)D.
Oxygen – 6129-keV gamma ray
Sodium – multiple gamma rays

Na Gamma Rays

Counts (s⁻¹)

Energy (keV)

Model/Measurement

Cross Section Library

- 440 keV
- 1625 keV

- G4NL 4.5
- G4NL 4.6
- JENDL 4.0
- JENDL 3.3
- BROND 3.1
- ENDF VII
- ENDF VI
- CENDL 3.1
- BROND 2.2
Magnesium – 1369-keV gamma ray
Aluminum – multiple gamma-ray peaks
Silicon – 1779-keV gamma ray peak
Sulfur – 2231-keV gamma ray

S 2232-keV Gamma Ray

Cross Section Library
Calcium – 3736-keV gamma ray

![Graph showing the calcium 3736-keV gamma ray spectrum and comparison with various cross section libraries.](image)
Titanium – 983-keV gamma ray

![Graph showing the energy spectrum of Ti 983-keV Gamma Ray with model/measurement data points from various libraries including G4NDL 4.6, ENDF VII, JENDL 4.0, JENDL 3.3, CENDL 3.1, and BROND 3.1.]
Iron – multiple gamma-ray peaks
Cobalt – multiple gamma-ray peaks
Nickel – multiple gamma-ray peaks