

Office of Nuclear Energy

David Henderson Program Manager, Advanced Modeling & Simulation Office Nuclear Energy Technologies (NE-51)

- In the United States, we are committed to getting to:
 100 percent clean energy on our transmission grid by 2035, and
 - net-zero carbon emissions by 2050.
- Investments in clean energy technologies will ensure the U.S. is the global leader in research, development, and deployment of critical energy technologies to combat the climate crisis, create good-paying union jobs, and strengthen our communities in all pockets of America.

Advanced Reactors: Integrated Grid for Net-zero Future

ADVANCED NUCLEAR TECHNOLOGY

ENERGY Office of **NUCLEAR ENERGY**

Nuclear Data Needs

- Driven by the anticipated materials and reactor flux spectrum comprising advanced nuclear reactor and fuels technologies
- Materials includes:
 - Coolants (e.g. FLiBe, molten chloride salts)
 - Moderators (e.g. graphite)
 - Control materials
 - Advanced fuels and clad (e.g. UN, SiC, etc.)

		Reactor Coolants							
and the second			iter	Liquid Metal		Molten Salt		Gas	
	Spectrum \rightarrow	Fast	Thermal	Fast	Thermal	Fast	Thermal	Fast	Thermal
Fuel Form	Ceramic								
	Metallic								
	Molten Salt								
	TRISO								

*Chart not necessarily an exhaustive list

Nuclear Data Needs Priority

- Data needs priority should be driven by the <u>requirements</u> to accurately predict reactor behavior during steady-state and transient operation as well as postulated accident scenarios
 - Uncertainty quantification in the context of risk important to NRC licensing
 - Depends highly on the quality of covariance data for uncertainty propagation
- Priorities needs to be based on:
 - Identification of isotope data <u>of significance</u> as relates to the prediction of key parameters of interest
 - Parameters of interest include (to name a few):
 - Core reactivity
 - Decay heat
 - Power distribution
 - Feedback response due to material changes during anticipated and postulate transients
 - Source term for offsite dose
- For priority nuclear data, efforts need to generally focus on:
 - Missing data and "unphysical" artifacts in evaluations
 - Missing covariance data
 - Large covariance data

ENERGY Office of **NUCLEAR ENERGY**