# **Electronic stopping power**

current status of experimental data, theoretical and numerical descriptions

## Claudia Montanari

Instituto de Astronomía y Física del Espacio,
CONICET and University of Buenos Aires, Buenos Aires, Argentina
Stopping Power Database, Nuclear Data Services, IAEA





# Stopping power, interest

## **Electronic energy loss** $\rightarrow$ excitations of the target electrons



## Why the interest?

- Knowledge of the basic physics involved, the electronic structure of the target, the response of the electrons to the ion passage, interaction potential.
- Applications

## **Applications**

•Ion beam analysis of materials, nuclear research, fission fragment detectors,...., arqueology

Deposition ranges

Hadron therapy for cancer

Detector of ions in satellites



•Ion implantation

doping metal oxide semiconductors, microelectronic devices and hard glasses

Material damage

spacecraft shielding

Losses of molecular groups  $\rightarrow$  L= a (-dE/dx)<sup>b</sup>

Simulations include stopping values (most of them from SRIM)

## **Experimental state of art**



https://www-nds.iaea.org/stopping/

Hot Topics » IAEA-CIELO • TENDL-2019 • JENDL-5 • ENDF/B-VIII.0 News » Pointwise2020//TENDL-2019



Centre

CoNDERC

DICEBOX

Beta-delayed neutrons

Charged particle reference cross section

### **Electronic Stopping Power of Matter for Ions**

**Graphs, Data, Comments and Programs** 

Last update: December, 2021 (see Updates)

This collection of stopping power measurements includes data published as early as Rosenblum, and is **continuously updated**. The collection, originally created and maintained by Helmut Paul, considers **any ion and target** combination that is measured and published, including solids (amorphous or polycrystalline), gases, elements or compounds, new materials such as polymers, oxides, silicates, and also biological targets. It deals with the **electronic** stopping power, assuming that nuclear stopping has been subtracted or is negligible.

Data and graphs can be downloaded from the tables for **H**, **He**, **Li to Ar**, and **K to U** ions. Detailed information on the content and organization of the database is provided in the **Introduction**.

Since 2015 the stopping database is maintained by the IAFA Nuclear Data Section Dr. Claudia Montanari (Universidad de Buenos Aires-CON

graphs, and the development of the database

- ✓ H. Paul, 1990 2015
- ✓ **IAEA,** 2015 present, <u>C.</u> Montanari
- More than 90 years of experimental data
- ✓ Around **4500 data sets, 59900 values,** 860 papers.
- ✓ All data is **open access** (tables)
- Figures for most (but not systems



ANNALES DE PHYSIQUE

W. HUD VO

1928

RECHERCHES EXPÉRIMENTALES SUR LE PASSAGE DES RAYONS α A TRAVERS LA MATIÈRE

Par SALOMON ROSENBLUM





At present, graphs are available for the following projectiles and ta

| Projectiles          | Target             | Graphs:    | <sup>7</sup> Li on Kapton (Polyimide)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|----------------------|--------------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <sub>3</sub> Li ions | Ag                 | Click here | A Rä89 3% BB_BB BB_BB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                      | Air                | Click here | C Pra08 5%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                      | Al                 | Click here | BB BB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                      | Ar                 | Click here | BB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                      | Au                 | Click here |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                      | В                  | Click here | 300 2 - · · · / / /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                      | С                  | Click here | BD ///                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                      | CH <sub>4</sub>    | Click here | id to the second of the second |
|                      | CO <sub>2</sub>    | Click here | B Mun99 2.3 C Pra08 5%  B Mun99 2.4 C Pra08 5%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                      | Cu                 | Click here | SRIM03 MSTAR3d Multiply by for Stoppi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                      | Gd                 | Click here | **************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                      | H <sub>2</sub>     | Click here | 0.01 0.1 1 1 1.0000E+03 keV / img/<br>0.07 1 1 1.8308E+01 eV / (1E15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                      | Не                 | Click here | Energy per Nucleon [MeV] 20 June 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                      | Lu                 | Click here |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                      | Kapton (polyimide) | Click here | Complete data table (txt file), origin figure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                      | Mylar              | Click here | ☐ 7LiKapto: Bloc de notas  Archivo Edición Formato Ver Ayuda                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                      | N2                 | Click here | 2.14 1.27 A Rä89 J.Räisänen and E.Rauhala, Radiation Eff. and Def. in Solids 108,21 (198 2.008571 1.34 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                      | Ne                 | Click here | D 1.878571 1.4 A 1.747143 1.46 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                      | Ni                 | Click here | 7 1.61 1.57 A 1.48 1.64 A 1.342857 1.78 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                      | Pd                 | Click here | 1.342637 1.76 A 1.207143 1.89 A 1.067143 2.05 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                      | Polycarbonate      | Click here | 0.9242857 2.23 A<br>0.7757143 2.49 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                      | Polypropylene      | Click here | 0.6214285 2.78 A 0.0676 2.652 B Mun99 F.Munnik,K.Väkeväinen,J.Räisänen,U.Wätjen, J.Appl.Phys. 86,3934 (1999)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                      | Si                 | Click here | 0.0801 2.758 B 0.0937 3.009 B 0.1081429 3.102 B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                      |                    |            | C 0.1227143 3.395 B 0.1472857 3.559 B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                      | SiO2               | Click here | 0.164 3.827 B<br>0.1665714 3.73 B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                      | Та                 | Click here | 0.1754286 3.61 B<br>0.1814286 3.831 B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                      |                    | _          | 0.1932857 3.62 B<br>0.2021429 3.712 B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                      |                    |            | 0.2287143 3.805 B 0.2602857 3.737 B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |







## H ions

#### More than 1000 set of measurements for H in different targets 0 Atomic Number = Number of Protons = Number of Electrons 6-H He RYDROGEN HELDIM Chemical Symbol **□** 6 - Chemical Name В Вe LITHUM DERYLLIUS BORON CARDON NTILOGEN OXYCEN TLUGRENE Atomic Weight - Number of Protons + Number of Neutrons Si Ar SILICON **METALS** Ga Mn Fe Co Cu Zn Ge Cr Kr THANKS 48 COBALT 50 COUNTR KRYPTON ♬ 47 Sn Tc Xe siver 108 STRONTIUM 88 LLADIUM CADMIUM 112 THENUM 101 HICDIUM 103 106 Ba Rn Ra Uub| Uut | Uuq | Uup | Uuh STATORCUM 223 44 226 4 MURRAIL **5**66 KEY Ho Selid at room temperature DYSPROXUM DIMIUM - Liquid at room temperature = Gas at room temperature Pa Th \* = Radioactive = Artificially Made The atomic weights listed on this Table of Elements have been repreted to the recreat whole number. As a result, this chart actually displays the mass number of a specific isotope for each element. An element's complete, unrounded atomic weight can be found on the It's Elemental web site: http://education.jkb.org/itselemental/index.html http://education.jlab.org/ Last revised on March 21, 2008







# **Stopping models**

Theoretical schemes covering a wide energy range.

| V. Control of the Con |        |              |               |                                       |                                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------------|---------------|---------------------------------------|---------------------------------|
| Scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Code   | Target       | Starting at   | Domain                                | _                               |
| Binary theory                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | PASS   | Atom         | Bohr          | High v                                | -<br>Sigmund                    |
| PCA/UCA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CasP   | online,      | 2021 och      | downward<br>High <i>v</i><br>downward | Grande<br>Schiwietz             |
| TCS-EFSR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | HISTOP | Fermi<br>gas | Quantal       | Low $v$ upward                        | Arista                          |
| SLPA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Α      | tom/molec    | Quantal       | High <i>v</i><br>downward             | Montanari<br>Miraglia           |
| MELF-GOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | A      | atom/molec   | Exp ELF       | High v downward                       | Abril<br>García Molina          |
| CDW-EIS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | A      | toms/Gases   | Quantal       | High v downward                       | Rivarola                        |
| TD-DFT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        | Fermi g      | gas Quantal   | Low v                                 | Miraglia<br>Echenique<br>Correa |
| TD-END                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        | Atoms/r      | molec Quantal | Low v                                 | Cabrera-Trujill Sabin           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |              |               |                                       |                                 |

Ref: Sigmund & Schinner, NIM 382 (2016) 15-25

## **Stopping models**

Theoretical schemes covering a wide energy range.

| Scheme        | Code   | Target       | Starting at | Domain                                | _                     |
|---------------|--------|--------------|-------------|---------------------------------------|-----------------------|
| Binary theory | PASS   | Atom         | Bohr        | High v                                | <br>Sigmund           |
| PCA/UCA       | CasP   | online,      | 2021 och    | downward<br>High <i>v</i><br>downward | -Grande<br>Schiwietz  |
| TCS-EFSR      | HISTOP | Fermi<br>gas | Quantal     | Low $v$ upward                        | Arista                |
| SLPA          | Α      | Atom/molec   | Quantal     | High $\emph{v}$ downward              | Montanari<br>Miraglia |

### Open subjects, difficulties, challenges:

- Heavy projectiles, Li to U
- Multielectronic targets, 4f electrones, lanthanides and heavy transition metals
- Complex molecules →biological interest, plastics, oxides

| TD-END | Atoms/molec | Quantal | Low v | Cabrera-Trujill |
|--------|-------------|---------|-------|-----------------|
|        |             |         |       | Sabin           |

Ref: Sigmund & Schinner, NIM 382 (2016) 15-25

Ahril

# Stopping reliable values, semiempirical and empirical codes

Multiperpose simulations need reliable stopping values

**SRIM** The Stopping and Range of Ions in Matter, by Ziegler (2013)

Geant 4, Monte Carlo simulations, TALYS 1.6; include SRIM

Semi-empirical

MSTAR for Li to Ar in solids and gases, by H. Paul and A. Schinner (2003)

empirical

ASTAR, PSTAR for protons and alphas in different targets, by Berger, NIST (1992)

https://www-nds.iaea.org/stopping/stopping\_prog.html

### ICRU Reports (International Commission on Radiation Units & Measurements)

- → ICRU 37 (1984) for electrons and positrons
- → ICRU 49 (1993) for H and He
- → ICRU 73 (2005) for Li to Ar

### **MACHINE LEARNING**:

ML Parfitt-Jackman, NIMB 478 (2020) 21-33

ML/deep neural network Mitnik et al (2022)

Experimental values from IAEA stopping database

## **SRIM**

Experimental measurements after 2013. Good agreement





### H in hydroxyapatite (mineral bone)















10<sup>2</sup>

Energy [keV]

10<sup>3</sup>

10<sup>4</sup>

10<sup>1</sup>

came and com

10°

10-1

## **Compounds**

SRIM code has an option for compound correction.

It separates core and bond contributions and alters the stopping for the bonding electrons based on the bonds found in the compound.

Zn+ O

2xAI + 3xO

### O on Silicon Nitride

## **Compounds**



Energy per Nucleon [Me\

- •high-melting-point 1900°C
- •relatively chemically inert
- •automobile industry (diesel engines, turbochargers, e...)
- •Si3N4 bearings in engines of NASA's Space Shuttle.



## **Data review, Machine Learning and DBSCAN**



## **Conclusions**

- ➤ IAEA stopping database, main compilation of experimental data, updated 2 or 3 times a year
- > Experimental data, still needed
- Reliable values, simulations, online codes, different efforts
- SRIM is a powerful tool, works well in lot of cases, not all. Different codes needs update. ML results, alternative solution
- Theoretical efforts, challenge, different models, high energy stopping is well known, but the maximum and low energy regions not so well, Bragg peak included. Many efforts in progress

# **Acknowledgments**

Technical and financial support from

- National Council of Scientific
   Research of Argentina,
- University of Buenos Aires
- International Atomic Energy Agency.







**Buenos Aires** 

University of Buenos Aires, Faculty of Sciences

