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235U + thermal n

log scale
235U + thermal n

Find A, Z, gammas

Seek highly correlated fission data:
E, v, A, Z, (N), prompt and delayed 

gammas, correlated particle-by-particle
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Extract Z: Ionization chamber as TPC, active cathode and anode

Extract N:  A and Z  N

UNM E-v Fission Spectrometer

Extract A:

Correlated E,A,Z,N
Measure TOF: v = L/TOF
Measure E directly – ionization chamber

~50-100 ns travel time 
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Transmission Time of Flight

Microchannel plate
Detector (MCP)

20 µg/cm2 C

252Cf ToF
6 MeV α
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Ionization Chamber

Fission 
Product

cathode

Frisch grid
anode

200 nm SiN windows
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~70 torr isobutane



Raw IC-TOF Data: 235U

IC anode pulse height (energy)
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To use E = 1/2 mv2 for mass, correct for energy loss, v loss

200 nm SiN window to IC
electron conversion carbon foil
(thin foils very hard to handle)

Thin windows/foils
reduce

E loss correction
(and broadening)

Combine v in TOF and E in IC to find A, but E different in TOF and IC

ELSource
ELCover ELFoil #1 ELFoil #2 ELSiN

TOF region E region
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To use E = 1/2 mv2 for mass, correct for energy loss, v loss

Using simulations to guide.  

Measurements of 252Cf fission product energy loss through thin silicon nitride and carbon foils, and comparison with SRIM-
2013 and MCNP 6.2 simulations, P. Baldez et al, Nuclear Instruments and Methods B 456, 142-147 (2019); 
https://doi.org/10.1016/j.nimb.2019.06.027
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https://doi.org/10.1016/j.nimb.2019.06.027


To use E = 1/2 mv2 for mass, correct for energy loss, v loss

Measurements of 252Cf fission product energy loss through thin silicon nitride and carbon foils, and comparison with SRIM-
2013 and MCNP 6.2 simulations, P. Baldez et al, Nuclear Instruments and Methods B 456, 142-147 (2019); 
https://doi.org/10.1016/j.nimb.2019.06.027
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Using simulations to guide.  

https://doi.org/10.1016/j.nimb.2019.06.027


Why different? Dealing with charge states
FF emitted with Qav ~ in the 20s

Charge state distributions of single species, single Ein

Fig:  N.K. Skobelev, Instruments and Experimental Techniques, 51, pp 351-357, 2008.
Qav: R.D. Evans, The Atomic Nucleus, 1955.

MCNP and SRIM both use Bethe Bloch

(with shell and target density effects)

But different charge state Z* calculations:

MCNP6.2 follows method of Bichsel for effective Z*
Z* = Z [ 1 - exp(-1.316x + 0.1112 x2 – 0.0650 x3)]
Where x = 100 β Z -2/3

Low E, MCNP6 similar to SPAR code
Z* = Z [ 1 - exp(-125 β Z -2/3)]

SRIM Z* modeled by the Brandt-Kitagawa method

See: P. Baldez et al, NIM B 456, 142-147 (2019); 
https://doi.org/10.1016/j.nimb.2019.06.027

10

https://doi.org/10.1016/j.nimb.2019.06.027


Matched E at source backed out from both TOF and IC data at same time:
E loss is mass dependent, 
v related to m, 
iterative v dependent E reconstruction

Schmitt data from: 
H.W. Schmitt, J.H. Neiler, F.J. Walter, Phys. Rev. 141, 1966
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To use E = 1/2 mv2 for mass, must correct for energy loss, v loss
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England & Rider University Spectrometer Results

Plus:  Highly correlated particle-by-particle 
for E, v, A, Z, (N), plus gammas next U measurement

Earlier 235U mass determination by UNM
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Recent (2022) 252Cf s.f. mass yield measurements at UNM

UNM

JAEA/ENDF

13



Ionization Chamber and Z determination
- time projection chamber

- range related to stopping power: Z*, A, E

Fission 
Product

Cathode

electron drift 

Frisch Grid Anode

  

“Active cathode” isolated by Teflon standoff
Timing from cathode, anode
Electron drift time to FG to extract range
Fit to simulation to extract Z

Stopping power is charge dependent
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IC ∆t cathode vs anode



Range
Active cathode design enables timing measurements
Determination of penetration depth/range
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Comparing codes, expected ranges for different nuclides

Codes are not directly useful for range.

fast calc
detailed calc
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95Sr (90.5 MeV)

134Te (67.0 MeV) 



SRIM calculated range R dependence on perturbations of Z, A, E of average Heavy & Light FF
- Mean light: A= 96, Z=38, E=90 MeV (at entrance to IC)
- Mean heavy: A=139, Z=53, E=57 MeV (at entrance to IC)

Zi(R,A,E)Light = -7.04225*(Ri-8.52)+0.23592*(Ai-96)+0.416197*(Ei-90.563)+0.16507

Zi(R,A,E)Heavy = -22.8311*(Ri-7.41)+.609589*(Ai-139)+ 1.324201*(Ei-57.036)-.39269

Perturbation functional dependence R(Z,A,E) to get Z(R,A,E)
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R as a fcn of
A, Z, E
(near a
central point)



Light OK

A and Z data  N,Z distribution for 235U(n,f)  
All signals in by ~50 – 100 ns, very close to a directly measured independent yield

Square = stable, blue dots = data, black dots >1% independent yield JAEA
Signal Processing and Data Acquisition for the UNM Fission Spectrometer to Measure Binary Fission Product Mass, Energy, 
Velocity, Atomic Number, and Gamma Rays, Correlated Particle-By-Particle, P. Baldez, M.L. Wetzel, R.E. Blakeley, A. 
Ragsdale, A.A. Hecht, Journal of Signal Processing Systems (2021); https://doi.org/10.1017/s11265-021-01703-w18

Heavy needs better 
simulation/calibration
(calibrate with gammas)

https://doi.org/10.1017/j.nimb.2019.06.027


Light OK

Heavy needs better 
simulation/calibration
(calibrate with gammas)

A and Z data  N,Z distribution for 235U(n,f)  
All signals in by ~50 – 100 ns, very close to a directly measured independent yield

Square = stable, blue dots = data, black dots >1% independent yield JAEA
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Fission-gamma coincidences

GMX 25% HPGe
Prompt gammas
(at Cf)

G
X6020 60%

 HPG
e


Delayed gammas (at IC) 
>50-100 ns post fission

Cf MCP1 MCP2 Ionization Chamber

1.2 uCi Cf
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Fission-gamma coincidences

Prompt gammas (100 ns window) at Cf 
(30k cts 0-5 MeV) 

delayed gammas (at IC) 
to 100 ns post fission

Prompt gamma time minus MCP1 time: 100 ns width.  
Low noise outside of prompt gamma pulse.

delayed gammas (at IC)
Fission to 1 us

Fission to 10 us

Fission to 1 ms

Prompt Delayed
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Fission product mass vs. coincident prompt gamma energy 
Will try to calibrate A and Z based on prompt gammas

CGMF simulation example for 105 keV



Thank You!

Phoenix 
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UNM at
LANSCE FP12

23


	Heavy ion stopping power data needs for �fission product mass yield measurements
	Slide Number 2
	Slide Number 3
	Transmission Time of Flight
	Ionization Chamber
	Raw IC-TOF Data: 235U
	To use E = 1/2 mv2 for mass, correct for energy loss, v loss
	To use E = 1/2 mv2 for mass, correct for energy loss, v loss
	To use E = 1/2 mv2 for mass, correct for energy loss, v loss
	Why different?  Dealing with charge states�FF emitted with Qav ~ in the 20s
	Matched E at source backed out from both TOF and IC data at same time:�E loss is mass dependent, �v related to m, �iterative v dependent E reconstruction�
	Slide Number 12
	Slide Number 13
	Ionization Chamber and Z determination�- time projection chamber�- range related to stopping power: Z*, A, E
	Slide Number 15
	Comparing codes, expected ranges for different nuclides
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Fission-gamma coincidences
	Fission-gamma coincidences
	Fission product mass vs. coincident prompt gamma energy �Will try to calibrate A and Z based on prompt gammas
	Thank You!

