Heavy ion stopping power data needs for fission product mass yield measurements

Adam Hecht University of New Mexico

WANDA 2022 Thursday, March 3, 8:15 am PT

Correlated E,A,Z,N Measure TOF: v = L/TOFMeasure **E** directly – ionization chamber

Extract A:
$$m = \frac{2E}{v^2} = \frac{2Et^2}{l^2}$$
 $\frac{\delta m}{m} = \sqrt{\left(\frac{\delta E}{E}\right)^2 + \left(2\frac{\delta t}{t}\right)^2 + \left(2\frac{\delta l}{l}\right)^2}$

Extract Z: Ionization chamber as TPC, active cathode and anode

Extract N: A and $Z \rightarrow N$

Transmission Time of Flight

NEW MEXICO

Raw IC-TOF Data: ²³⁵U

IC anode pulse height (energy)

Time of Flight

To use $E = \frac{1}{2} mv^2$ for mass, correct for energy loss, v loss

Combine v in TOF and E in IC to find A, but E different in TOF and IC

electron conversion carbon foil (thin foils very hard to handle)

Thin windows/foils reduce E loss correction (and broadening)

200 nm SiN window to IC

To use $E = \frac{1}{2} \text{ mv}^2$ for mass, correct for energy loss, v loss

Measurements of ²⁵²*Cf fission product energy loss through thin silicon nitride and carbon foils, and comparison with SRIM-*2013 and MCNP 6.2 simulations, P. Baldez et al, Nuclear Instruments and Methods B 456, 142-147 (2019); https://doi.org/10.1016/j.nimb.2019.06.027

To use $E = \frac{1}{2} \text{ mv}^2$ for mass, correct for energy loss, v loss

Measurements of ²⁵²*Cf fission product energy loss through thin silicon nitride and carbon foils, and comparison with SRIM-*2013 and MCNP 6.2 simulations, P. Baldez et al, Nuclear Instruments and Methods B 456, 142-147 (2019); https://doi.org/10.1016/j.nimb.2019.06.027

Why different? Dealing with charge states FF emitted with $Q_{av} \sim$ in the 20s

Charge state distributions of single species, single E_{in}

Fig. 3. Charge-state distributions of 48 Ca ions with an energy of 264.5 MeV, measured after their passing through (*l*) the Au and (2) C foils.

10

Fig: N.K. Skobelev, Instruments and Experimental Techniques, 51, pp 351-357, 2008. Qav: R.D. Evans, The Atomic Nucleus, 1955. MCNP and SRIM both use Bethe Bloch

$$-\frac{dE}{d\rho x} = \frac{4\pi (ke^2)^2 N_A}{mc^2} \frac{Z_p^2}{\beta^2} \frac{Z_t}{A_t} \left[ln \frac{2mc^2 \beta^2}{(1-\beta^2)} - \beta^2 - lnI \right]$$

(with shell and target density effects)

But different charge state Z* calculations:

MCNP6.2 follows method of Bichsel for effective Z* Z* = Z [1 - exp(-1.316x + 0.1112 x² - 0.0650 x³)] Where x = 100 β Z ^{-2/3}

Low E, MCNP6 similar to SPAR code $Z^* = Z [1 - exp(-125 \beta Z^{-2/3})]$

SRIM Z* modeled by the Brandt-Kitagawa method

See: P. Baldez et al, NIM B 456, 142-147 (2019); https://doi.org/10.1016/j.nimb.2019.06.027

To use $E = \frac{1}{2} mv^2$ for mass, must correct for energy loss, v loss Matched E at source backed out from both TOF and IC data at same time: E loss is mass dependent, v related to m,

iterative v dependent E reconstruction

Recent (2022) ²⁵²Cf s.f. mass yield measurements at UNM

Range

Active cathode design enables timing measurements Determination of penetration depth/range

Comparing codes, expected ranges for different nuclides

Codes are not directly useful for range.

Perturbation functional dependence R(Z,A,E) to get Z(R,A,E)

SRIM calculated range R dependence on perturbations of Z, A, E of average Heavy & Light FF

- Mean light: A= 96, Z=38, E=90 MeV (at entrance to IC)
- Mean heavy: A=139, Z=53, E=57 MeV (at entrance to IC)

Zi(R,A,E)_{Light} = -7.04225*(Ri-8.52)+0.23592*(Ai-96)+0.416197*(Ei-90.563)+0.16507 Zi(R,A,E)_{Heavy} = -22.8311*(Ri-7.41)+.609589*(Ai-139)+ 1.324201*(Ei-57.036)-.39269

A and Z data \rightarrow N,Z distribution for ²³⁵U(n,f)

Signal Processing and Data Acquisition for the UNM Fission Spectrometer to Measure Binary Fission Product Mass, Energy, Velocity, Atomic Number, and Gamma Rays, Correlated Particle-By-Particle, P. Baldez, M.L. Wetzel, R.E. Blakeley, A. 18 Ragsdale, A.A. Hecht, Journal of Signal Processing Systems (2021); https://doi.org/10.1017/s11265-021-01703-w

A and Z data \rightarrow N,Z distribution for ²³⁵U(n,f)

Square = stable, blue dots = data, black dots >1% independent yield JAEA

Fission-gamma coincidences

Fission-gamma coincidences

Cou

Prompt gamma time minus MCP1 time: 100 ns width. Low noise outside of prompt gamma pulse.

Fission product mass vs. coincident prompt gamma energy Will try to calibrate A and Z based on prompt gammas Gamma-ray Energy [keV] 007 120 120 CGMF simulation example for 105 keV 0.12 0.10 Fraction of Events 0.08 0.06 0.04 0.02 0.00 Fission Fragment Mass (A) Mass [amu]

