Measurements of Independent Fission Product Yields

Workshop on Applied Nuclear Data Activities (WANDA) March 4, 2022

> L. Snyder (LLNL) J. Latta & U. Greife (CSM) M. E. Moore, B. Fulsom & L. Wood (PNNL) D.L. Duke, K.B. Montoya (LANL)

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

Pacific Northwest

LLNL-PRES-832006

Objective: Fill in gaps in IFPY nuclear data and improve quantification of uncertainty in new measurements

Leverage Existing and New Technologies

 Frisch Gridded Ionization Chamber (FGIC) and the fission Time Projection Chamber (fissionTPC)

The 2E Method

D.L. Duke, et al. PRC 94, 054604 (2016)

- Iterative analysis relying on conservation of momentum
- Advantage: Independent FPY, Pre- & Post-Neutron Emission
 - Measured at earliest possible time, before beta-decay
- Disadvantage: Mass only, Limited resolution
 - 3-5 AMU, Typical

- 2E Analysis
 - Assume symmetric fission

•
$$m_1^{pre} + m_2^{pre} = \frac{M_{cn}}{2}$$

- Determine m^{post} based on v(A) curve
- Recalculate m^{pre}

•
$$m_1^{preNew} = M_{cn} \times \frac{E_2}{E_1/b + E_2}$$

• $b = \frac{m_2^{pre} \times m_1^{post}}{m_2^{post} \times m_1^{pre}}$

Iterate to convergence criteria
m^{pre} - m^{preNew} < 0.125

FGIC are a proven technology used to measure fission observables such as TKE, Cross Sections, and IFPY

- This detector type was used in most of the existing IFPY measurements, which provide about 3-5 amu mass resolution
- Data analysis by CSM Ph.D. student Kristina Montoya

Lawrence Livermore National Laboratory

FGIC Analysis Status

K. Montoya, D.L. Duke

- ²³⁷Np data submitted for publication in Journal of Physics G
- ²³³U data analysis under final review
- ²³⁴U data was not collected
- ²³⁹Pu initial analysis stage. Early indications that alpha background correction will be successful
- Expected completion of ²³³U,²³⁹Pu by Q1 FY23

The fissionTPC IFPY Analysis

reconstruction of the ionization left by fission fragments and other charged particles.

NIM A 759 (2014) 50-64

Quantities measured by the fissionTPC

- 3D ionization profile for individual tracks provides:
 - Track length
 - Total energy
 - Location & value of max ionization
 - Interaction vertex
 - Track direction
 - Ionization profile (Bragg curve)

Lawrence Livermore National Laboratory LLNL-PRES-832006

The 2E Method with the fissionTPC

- Advantage: Wealth of information
 - Direct measurement of angle: energy loss correction
 - High dynamic range: Energy resolution determination independent of fission fragments
- Disadvantage: Reduced energy resolution
 - 3k channel/anode
 - Not optimized for energy

Refined Energy Loss Correction

- Energy loss typically corrected with an average 1/cos(theta) over all fragments
- Gate on angle and initial mass determination to produce a mass dependent correction with uncertainties
 - For a given Cos(θ) range, Slice X-axis to get each mass range
 - Project to Y-axis

rence Livermore National Laboratory

LLNI - PRES-832006

- Get mean and error in mean from Gaussian statistics
- Example: Average heavy fragment region (En = 0.2 2 MeV)

FissionTPC Energy Resolution

- FissionTPC can identify spontaneous alpha decay
- Generally, no equivalent measurement of energy resolution for FGIC
- E_{res} = ~8% for alphas
- Assume it is similar for fission fragments, translates into ~7 AMU mass resolution
- Assign a partial uncertainty E_{res}

FissionTPC 2E Results

- Comparison ²³⁵U to England & Rider indicates an 7-8 AMU resolution
- This is in agreement with the estimate based on fissionTPC energy resolution

FissionTPC 2E Results

First measurement of ²³⁹Pu(n,f)
Pre-neutron TKE above 5 MeV

Pu239 Pre n-emission TKE

10

IFPY for ²³⁹Pu not completed

13

Lawrence Livermore National Laboratory

1

En [MeV]

This work

-Madland

-GEF

182

180

178

Not the second seco

172

170

168

Bragg Curve Analysis with the fissionTPC for ²³⁵U Elemental (Z) IFPY

Stopping Force Analysis of ²³⁵U for Elemental IFPY with the fissionTPC, M.E. Moore et al., submitted to NDS

- Using input mass value and velocity produced by 2E analysis and Bragg curves
- Using Standard Thomas-Fermi charge for *effective* charge
- Empirically fit parameters of atomic number at the instant of maximum stopping power
- 3 Z resolution

$$S = \frac{4\pi Z_1^2 Z_2 e^4}{mv^2} L; \quad L = \begin{cases} \ln\left(\frac{Cmv^3}{Z_1 e^2\omega}\right) & \text{Bohr}\\ \ln\left(\frac{2mv^2}{h\omega}\right) & \text{Bethe} \end{cases}$$
$$q = Z_1 \left[1 - e^{-\frac{v}{v_{TF}}}\right]; \quad v_{TF} = Z_1^{2/3} v_0$$

Bragg Curve Analysis with the fissionTPC for ²³⁵U Elemental (Z) IFPY

Stopping Force Analysis of ²³⁵U for Elemental IFPY with the fissionTPC, M.E. Moore et al., submitted to NDS

- First of its kind measurement, explores the method; Limitations and possible improvements
- A good review of references for fission fragment (heavy ion) stopping
- Paper does include data tables

Conclusion

- New data collected, objectives largely met
- FissionTPC analysis explored partial uncertainties. 2E uncertainty dominated by energy resolution followed by systematic effects of prompt neutron estimates
- Stopping force analysis for Z yield was completed. Improvements in energy resolution and calibration could make such an analysis very useful

Backup

