Applications and reactions on unstable nuclei WANDA 2022

Jo Ressler with: P. Bedrossian, R. Hoffman, V. Mozin, W.-J. Ong, A. Ratkiewicz, M. Robel

LLNL-PRES-832056 This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

Reactions on unstable nuclei require pretty intense conditions for applications...

- Unstable nuclei considered here have decay half-lives < 1e6 years
- With shorter half-lives, application must produce unstable isotope through one reaction, and destroy it in another
 - Second-order reaction
 - Must produce a significant quantity of intermediate radioactive isotope
 - Production/destruction in same locale
- One of two conditions:
 - High flux of particles or photons + residence time or
 - Very high flux of particles or photons (extreme conditions)
- Considered nuclear data needs
 - Most applications require radiochemistry, material science, engineering...
 - Data can be measured or theoretical, as long as it is accurate applications care about the data (preferably in an evaluated library)

Medical physics utilizes reactions on unstable isotopes for production of (some) therapeutic nuclides

- Diagnostic and therapeutic applications
 - Diagnostic: imaging; PET, SPECT example: ⁶⁸Ga
 - Therapeutic: targeted energy deposition *example: ¹⁷⁷Lu*
 - Theragnostic: Two isotopes of the same element for diagnostic and therapeutic examples: ⁶⁴Cu-⁶⁷Cu, ^{43,44}Sc-⁴⁷Sc
- Wide variety of isotopes produced
 - Proton-rich in cyclotron, synchrotron, accelerator: ¹⁸F, ⁶⁷Ga, ¹²³I, ²⁰¹TI
 - Neutron-rich in a fission reactor: ^{99m}Tc, ¹³¹I, ¹⁶⁶Ho, ¹⁷⁷Lu
- High-flux reactor-produced isotopes on intermediate products
 - ${}^{186}W(n,\gamma){}^{187}W(n,\gamma){}^{188}W \rightarrow {}^{188}Re$
 - ¹⁹²Os(¹⁹⁴Ir), ¹⁶⁴Dv(¹⁶⁶Ho)
 - ${}^{175}Lu(n,\gamma){}^{176}Lu(n,\gamma){}^{177}Lu$
- Data are lacking for neutron reactions on unstable nuclei
 - Need to understand production options and purity issues

[1] 2018 Atlas of Neutron Resonances [2] 2019 Appl. Rad. Iso, Esöz et al

Our current generation of nuclear power reactors has known reactions, near future has unknowns

- Reactions on radioactive isotopes occur with Light Water Reactors (LWRs)
 - Actinides, neutron capture and fission, Am and Cm in spent fuel
 - Fission product generation, neutron capture example ¹³⁵Xe, ¹⁴⁹Sm poisons
- Higher burnup under consideration
 - Currently ~45 GWd/MTU, increasing to 75 80 GWd/MTU
 - Longer irradiation periods shift neutron spectrum, reaction rates
 - Capture effects on fission products and structural materials will increase
- Accident Tolerant Fuels: changes to fuel including enrichment, cladding materials, pellet design...
- Analytical models may not be fully validated in new operating regimes, lack data
 - Affects predictive capability
 - Licensing and control, based on material loading/unloading, reactor operation

Burnup credit isotope ¹⁴⁸Nd depends on fission and capture reactions

Reactor monitoring applications will be challenged with unknowns

- Safeguards, forensics, and non-proliferation activities have less access to reactor details
- Interdicted or environmentally sampled materials
 - Unknown operating parameters from known reactor
 - Unknown reactor (and unknown operating parameters)
- Research with ¹³³Cs/¹³⁵Cs ratios in spent fuel
 - Predicted to vary linearly with neutron flux over typical LWR power range
 - Validation tests with BR3 reactor

Systematic error due to nuclear data or other effects?

Next generation energy reactors will utilize new materials and processes

- Small Modular Reactors (<300 MWe)
 - iPWR, MSR, HTGR, LMFR... 50+ concepts
 - Russia, China, US, Canada, South Korea, France
- Alternate fuels
 - High Assay Low Enriched Uranium (HALEU)
 - Different compounds and material states (e.g. liquid or sintered)
 - Burnable poisons
- New operating regimes
 - Higher burnup
 - Dynamic fuel movement through the core (e.g. liquids or pebble-bed)
- Closed, semi-closed fuel cycles; Mixed Oxide (MOX), Fast breeder reactors
- Will involve different isotopes, environments, neutron energies
 - Analytical models may be unvalidated or incomplete
 - Safeguards challenges

New York Times, 11/5/2021 https://www.nytimes.com/2021/11/05/world/europe/russia-nuclear-power-climate-change.htm

Akademik Lomonsov, Pevek, Russia

Stockpile Stewardship Program utilizes a large number of reactions on unstable nuclei

(n,γ) (n,2n) Understanding our test history 16 s 909 keV Fission product yields, reactions on fission products Radiochemical tracers 14 ms 675 keV 13 h 381 keV 0.3 ms 392 keV (n,n') Knowledge of production and destruction networks needed Competing capture and (n,2n) reactions T_{1/2} = 80 h 87**V** T_{1/2} = 107 d stable 89**Y** 88v 87 Y_a (n, γ) 88 Y_a ${}^{87}Y_{a}(n, \gamma) {}^{88}Y_{m1}$ ⁹⁴7r ⁹⁵7r ⁹⁶7r 64 d stable stable Calculated Calculated (barns) (barns) Indirect meas. 94**V** 95**v** 96**V** Indirect meas. 0.1 19 m 10 m 5.3 s 0.1 Section Section ⁹⁴Sr ⁹⁵Sr ⁹⁶Sr 0.01 25 s 75 s 1.1 s Cross 0.01 Cross ß ⁹⁶Rb ⁹⁴Rb ⁹⁵Rb Hoffman(HFB Hoffman(HFB Escher (SUR 0.4 s 0.001 2.7 s 0.2 s Escher(SUR 0.001 0.01 0.1 1 10 10 (n,2n) 0.01 0.1 1 (n,χ) E_n (MeV) E_n (MeV)

Nuclear astrophysics provides non-terrestrial extreme environments

- Nucleosynthesis and origin of the elements
 - Astrophysical environments
- Trifecta:
 - Astronomical observations and laboratory measurements of stellar grains
 - Nuclear data
 - Astrophysics network calculations
- Energy produced through fusion, limited to elements less than Fe
- All heavier elements produced through later stages of stellar evolution or interstellar processes
- Extreme environments; reactions on unstable nuclei are common

Big Bang fusion н Cosmic ray fission Exploding massive stars Exploding white dwarfs 5 **B** Merging neutron stars Dying low-mass stars Very radioactive isotopes; nothing left from stars Na 25 28 Ni 36 29 Cu 30 Zn Mn Fe Co Se Br Ge Kr 39 Y 40 **Zr** 41 42 Mo 43 **Tc** 52 Te 53 54 38 44 46 50 51 Sb 45 Rh 47 48 Cd Rb Nb Ru Pd In Sr Xe Ag Sn 56 72 Hf 73 **Ta** 76 **Os** 86 77 78 81 82 85 75 79 80 83 84 **Po** Hg Bi Cs Ba Ir Pt Au Ti Pb At Rn 88 87 Fr Ra 65 **Tb** 60 Nd 62 63 64 Gd 66 **Dy** 67 **Ho** 69 **Tm** 59 Pr 61 68 Er Pm Sm Eu La Ce

94

Pu

93

Np

92 U

91 **Pa**

90 Th

89

Ac

The evolving composition of the Universe

https://www.science.org/doi/10.1126/science.aau9540

Isotope production processes

- r-process, rapid neutron capture
 - Large neutron flux, few seconds
 - Reactions very far from stability
- s-process, slow neutron capture
 - Low neutron flux, decades between neutron captures
 - Reactions along stability
- i-process, intermediate between s- and r-
 - Carbon-enhanced metal-poor stars
 - Neutron capture on unstable isotopes
- P-nuclei, ~35 stable isotopes cannot be made in s-, r- process
 - vp-process: neutrino winds in core collapse supernova create prich environment; proton capture and (n,p)
 - γ-process: core collapse supernova, photodisintegration of sproduced seed nuclei

(n,γ)

ß

A7

β⁺/EC

Multiple applications utilize reactions on unstable nuclei

- High particle flux environment produces the unstable nuclei, which may undergo further (destruction) reactions
- Terrestrial applications with unstable isotopes are dominated by neutrons
 - Due to source availability; high flux of charged particles limited to astrophysical environments
 - Largely neutron capture, but other reactions such as (n,2n) and (n,p) can be important
- Lack of data, even close to stability
 - For thermal neutron reactor irradiation, Atlas of Neutron Resonances has limited (if any) data for one isotope off stability
 - Evaluated reaction data libraries, e.g. ENDF, often have no data
- Meeting data needs is a challenge: difficult measurements and theory

1958 Ford Nucleon

By Ford Motor Company, Fair use, https://en.wikipedia.org/w/index.php?curid=685950

