Applications and reactions on unstable nuclei

WANDA 2022

Jo Ressler with:

P. Bedrossian, R. Hoffman, V. Mozin, W.-J. Ong, A. Ratkiewicz, M. Robel
Reactions on unstable nuclei require pretty intense conditions for applications...

- Unstable nuclei considered here have decay half-lives < 1e6 years

- With shorter half-lives, application must produce unstable isotope through one reaction, and destroy it in another
 - Second-order reaction
 - Must produce a significant quantity of intermediate radioactive isotope
 - Production/destruction in same locale

- One of two conditions:
 - High flux of particles or photons + residence time or
 - Very high flux of particles or photons (extreme conditions)

- Considered nuclear data needs
 - Most applications require radiochemistry, material science, engineering...
 - Data can be measured or theoretical, as long as it is accurate – applications care about the data (preferably in an evaluated library)
Medical physics utilizes reactions on unstable isotopes for production of (some) therapeutic nuclides

- **Diagnostic and therapeutic applications**
 - Diagnostic: imaging; PET, SPECT *example:* 68Ga
 - Therapeutic: targeted energy deposition *example:*177Lu
 - Theragnostic: Two isotopes of the same element for diagnostic and therapeutic *examples:* 64Cu-67Cu, 43,44Sc-47Sc

- **Wide variety of isotopes produced**
 - Proton-rich in cyclotron, synchrotron, accelerator: 18F, 67Ga, 123I, 201Tl
 - Neutron-rich in a fission reactor: 99mTc, 131I, 166Ho, 177Lu

- **High-flux reactor-produced isotopes on intermediate products**
 - 186W(n,γ)187W(n,γ)188W \rightarrow 188Re
 - 192Os(194Ir), 164Dy(166Ho)
 - 175Lu(n,γ)176Lu(n,γ)177Lu

- **Data are lacking for neutron reactions on unstable nuclei**
 - Need to understand production options and purity issues

Our current generation of nuclear power reactors has known reactions, near future has unknowns

- Reactions on radioactive isotopes occur with Light Water Reactors (LWRs)
 - Actinides, neutron capture and fission, Am and Cm in spent fuel
 - Fission product generation, neutron capture example 135Xe, 149Sm poisons

- Higher burnup under consideration
 - Currently ~45 GWd/MTU, increasing to 75 – 80 GWd/MTU
 - Longer irradiation periods shift neutron spectrum, reaction rates
 - Capture effects on fission products and structural materials will increase

- Accident Tolerant Fuels: changes to fuel including enrichment, cladding materials, pellet design...

- Analytical models may not be fully validated in new operating regimes, lack data
 - Affects predictive capability
 - Licensing and control, based on material loading/unloading, reactor operation

Burnup credit isotope 148Nd depends on fission and capture reactions
Reactor monitoring applications will be challenged with unknowns

- Safeguards, forensics, and non-proliferation activities have less access to reactor details

- Interdicted or environmentally sampled materials
 - Unknown operating parameters from known reactor
 - Unknown reactor (and unknown operating parameters)

- Research with $^{133}\text{Cs}/^{135}\text{Cs}$ ratios in spent fuel
 - Predicted to vary linearly with neutron flux over typical LWR power range
 - Validation tests with BR3 reactor

Diagram:

- ^{133}Cs: 100%
- ^{134}Cs: 2\text{y}
- ^{135}Cs: 2e6\text{y}
- ^{133}Xe: 2d/5d
- ^{134}Xe: 10%
- ^{135}Xe: 9h
- ^{133}I: 21h
- ^{134}I: 53m
- ^{135}I: 7h

Graph: Modeled and Experimental

- Data ($\mu \pm 2\sigma$)
- Model
- Model $\pm 10\%$

Systematic error due to nuclear data or other effects?
Next generation energy reactors will utilize new materials and processes

- Small Modular Reactors (<300 MWe)
 - iPWR, MSR, HTGR, LMFR... 50+ concepts
 - Russia, China, US, Canada, South Korea, France

- Alternate fuels
 - High Assay Low Enriched Uranium (HALEU)
 - Different compounds and material states (e.g. liquid or sintered)
 - Burnable poisons

- New operating regimes
 - Higher burnup
 - Dynamic fuel movement through the core (e.g. liquids or pebble-bed)

- Closed, semi-closed fuel cycles; Mixed Oxide (MOX), Fast breeder reactors

- Will involve different isotopes, environments, neutron energies
 - Analytical models may be unvalidated or incomplete
 - Safeguards challenges

New York Times, 11/5/2021
Stockpile Stewardship Program utilizes a large number of reactions on unstable nuclei

- Understanding our test history
 - Fission product yields, reactions on fission products
 - Radiochemical tracers

- Knowledge of production and destruction networks needed
 - Competing capture and (n,2n) reactions

\[(n,\gamma) \quad (n,2n) \quad (n,n') \]

- \(^{94}\text{Zr} \) stable
- \(^{95}\text{Zr} \)
- \(^{96}\text{Zr} \) stable
- \(^{94}\text{Y} \) 19 m
- \(^{95}\text{Y} \) 10 m
- \(^{96}\text{Y} \) 5.3 s
- \(^{94}\text{Sr} \) 75 s
- \(^{95}\text{Sr} \) 25 s
- \(^{96}\text{Sr} \) 1.1 s
- \(^{94}\text{Rb} \) 2.7 s
- \(^{95}\text{Rb} \) 0.4 s
- \(^{96}\text{Rb} \) 0.2 s

- \(^{87}\text{Y} \) 87Y
- \(^{88}\text{Y} \) 88Y
- \(^{89}\text{Y} \) stable

- \(^{137}\text{Y} \)
- \(^{90}\text{Y} \) 909 keV
- \(^{392}\text{keV} \)
- \(^{675}\text{keV} \)

- \(^{94}\text{Zr} \)
- \(^{95}\text{Zr} \) stable
- \(^{96}\text{Zr} \) stable
- \(^{94}\text{Sr} \) 64 d
- \(^{94}\text{Sr} \) 95Y
- \(^{95}\text{Sr} \) 64 d
- \(^{96}\text{Sr} \) 95Y
- \(^{96}\text{Sr} \) stable

- \(^{94}\text{Rb} \)
- \(^{95}\text{Rb} \) 96Y
- \(^{96}\text{Rb} \) 96Y

- \(^{87}\text{Y} \)
- \(^{87}\text{Y} \) (n,\gamma) \(^{88}\text{Y} \)

- Cross Section (barns)
- Energy (MeV)

- Calculated
- Indirect meas.

- Calculated
- Indirect meas.

- Hoffman (HPSI)
- Escher (GSI)
Nuclear astrophysics provides non-terrestrial extreme environments

- Nucleosynthesis and origin of the elements
 - Astrophysical environments

- Trifecta:
 - Astronomical observations and laboratory measurements of stellar grains
 - Nuclear data
 - Astrophysics network calculations

- Energy produced through fusion, limited to elements less than Fe

- All heavier elements produced through later stages of stellar evolution or interstellar processes

- Extreme environments; reactions on unstable nuclei are common

https://www.science.org/doi/10.1126/science.aau9540
Isotope production processes

- **r-process, rapid neutron capture**
 - Large neutron flux, few seconds
 - Reactions very far from stability

- **s-process, slow neutron capture**
 - Low neutron flux, decades between neutron captures
 - Reactions along stability

- **i-process, intermediate between s- and r-**
 - Carbon-enhanced metal-poor stars
 - Neutron capture on unstable isotopes

- **P-nuclei, ~35 stable isotopes cannot be made in s-, r- process**
 - νp-process: neutrino winds in core collapse supernova create p-rich environment; proton capture and (n,p)
 - γ-process: core collapse supernova, photodisintegration of s-produced seed nuclei
Multiple applications utilize reactions on unstable nuclei

- High particle flux environment produces the unstable nuclei, which may undergo further (destruction) reactions

- Terrestrial applications with unstable isotopes are dominated by neutrons
 - Due to source availability; high flux of charged particles limited to astrophysical environments
 - Largely neutron capture, but other reactions such as \((n,2n)\) and \((n,p)\) can be important

- Lack of data, even close to stability
 - For thermal neutron reactor irradiation, Atlas of Neutron Resonances has limited (if any) data for one isotope off stability
 - Evaluated reaction data libraries, e.g. ENDF, often have no data

- Meeting data needs is a challenge: difficult measurements and theory