Enabling direct reaction studies with small, highly radioactive samples

Brad DiGiovine
P-3, Physics Division

1 March 2022

LA-UR-22-21560
Direct reaction studies on radioactive samples

Chemistry

Instruments, Infrastructure and Execution

Sample Production
Experiments

hotLENZ Instrument
- For \((n,z)\) studies
- \(^{56}\text{Ni}\) sample e-plated on thin Au foil
- Custom tungsten instrument cask
- Remote operations

DICER Instrument
- For \((n,\text{tot})\) studies
- Simultaneous sample in-out measurement
 - Ø1mm binocular collimation, 30m long system
 - “Thick” samples for transmission measurements
- \(^{88}\text{Zr}\) sample in 2M DCI D\(_2\)O solution
- Self shielding hermetic sample container
Chemistry

• Remote operations in hot cells
• Chemical separation of irradiated production target, fab prep
• Identification and quantification of sample material and contaminants
• Speed and efficiency of operations
Sample Considerations

- **Sample form factor**
 - Thin platings
 - Aqueous solutions

- **Sample material location**
 - Limited material
 - Production
 - Dose considerations
 - Beam/target overlap critical

- **Neutronics**

- **Chemical compatibility**

Aqueous solution Ø1mm x 10mm

Tungsten container Ø10mm x 15mm

DICER 88Zr

Ø2mm Aluminum beam window

Galvanic corrosion

Ø6mm deposition

hotLENZ 56Ni

Custom self-locating e-plating gasket
Sample Production

- Remote operations in hot cells
- Sample production techniques
 - Electroplating
 - Hermetically sealed
- Packaging and transport

Automated microliter dispensing system

On-board inspection camera snapshots

Inspection Camera

Microliter syringe driver

Sample alignment stage

Driven linear stage
Instruments, Infrastructure and Execution

56Ni with hotLENZ @ WNR

- Facility-flightpath-instrument optimization
 - Holistic approach to design
 - Modern metrology→T4Gen2
 - Advanced collimation
 - Precision alignment

- Safety
 - Radiation safety
 - Remote operations
 - Shielding
 - Cold runs

Spallation target metrology testing

Instrument cask

Remote manipulation system arm

8.25m

WNR facility spatial data set

Instrument, collimation, and sample aligned to < 10μm from nominal
Instruments, Infrastructure and Execution

56Ni instrument cask loading

Advanced collimation for precision (n,z) studies

56Ni instrument cask installation

56Ni – sample transport basket

Cask is inside chamber

hotLENZ instrument assembly

Flight path shutter

hotLENZ ready for 56Ni study

56Ni - instrument cask transport

hotLENZ ready for 56Ni study
Instruments, Infrastructure and Execution

\(^{88}\text{Zr}\) with DICER @ Lujan

- Techniques developed from \(^{56}\text{Ni}\) campaign
 - Modern metrology
 - Laser tracker
 - Optical CMM
 - Photogrammetry
 - Structured light
 - Precision alignment
- Safety
 - Radiation safety
 - Shielding
 - Containment
 - Cold runs

Sample placement repeatability limited by sample housing manufacturing tolerances, inspected to 1\(\mu\)m with S.L.

Instrument alignment < 10\(\mu\)m from nominal along 30m flight path.
Instruments, Infrastructure and Execution

Sample holder/collimator opened and prepared for installation of 88Zr sample

88Zr sample position

DICER instrument sample station ready for 88Zr study

Sample holder and collimator, Ø1mm binocular style with 15m focal point
Direct reaction studies on radioactive samples

• Fully integrated multidisciplinary effort
 – Systems engineering approach to design, integrate, and manage complex systems
 – Precise coordination of intricate operations across multiple teams
 – This methodology delivers the required speed and efficiency, but….

• Safety is paramount

• Direct reaction studies on many short lived radioactive isotopes is within reach!