Overview on Reactions on Unstable Nuclei for Astrophysics at FRIB Hendrik Schatz Michigan State University

A New Picture of Nucleosynthesis: Many More Nuclear Pathways in the Cosmos

FRIB Provides New Opportunities for Nuclear Astrophysics

- FRIB has completed all milestones and is on track for delivering first beams to experiments in Spring
- Unique opportunities for Nuclear Astrophysics

Final beam commissioning completed:

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

FRIB Provides Fast, Stopped, and Reaccelerated Beams

Need Accurate Nuclear Physics for X-ray Burst Models

FRIB Will Address X-ray Burst Reactions

(also needed for Novae, p-process, explosive Si burning in supernovae...)

- Typical T_{1/2}: seconds minutes
- Direct reaction rate measurements with reaccelerated beams:
 - (α ,p): JENSA Gas Target, AT-TPC Active Target, MUSIC
 - (p,γ): SECAR Recoil Separator
- Indirect reaction measurements are also essential
 - Some important resonances are too weak to be measured directly
 - Pave the way for direct measurements (some resonance properties need to be known)
 - Studies of narrow resonances (low level density):
 - (d,nγ), (³He,d) p-transfer with fast beams (S800 spectrometer, GRETINA γ-array, LENDA n-detector) and with reaccelerated beams (ORRUBA Si-array, SECAR, SOLARIS spectrometer) – can use ANC method (also THM)
 - (d,p) n-transfer on mirror for N=Z nuclei (ORRUBA)
 - β -decay, β -p decay (GADGET gas detector) to study resonance decay branches
 - Studies to improve Hauser-Feshbach calculations (high level density)
 - Level densities and strength functions

 \bigtriangledown

FRIB Will Address Reactions for Heavy Element Nucleosynthesis

Open Questions:

- What are the relative contributions of these processes to the origin of the elements?
- What do the abundance patterns tell us about the physics of astrophysical environments?

FRIB Will Directly Measure (α ,n) Reaction Rates for the Weak r-Process

Important reactions affecting the final abundances Have been identified (Pereira et al. 2020, Bliss et al. 2020)

Direct measurement techniques for reaccelerated beams developed:

(Meisel, Montes, et al.)

Recoil detection MUSIC

(Avila, Ong, et al.)

Recoil + Neutron detection: SECAR + LENDA

Constraining Neutron Capture Rates on Unstable Nuclei at FRIB

Statistical Model Applicability

Importance of Direct Capture vs Statistical Model

Direct measurements:

- Long lived samples:
 - FRIB Harvesting
 - Transport to external n-beam facility
 - Future n-beam at FRIB?
- Far future: storage ring and n-target (see talk by Mosby)

Indirect studies: if HF is Applicable

 Improve HF calculations: strength functions, level densities (β-Oslo – see talk by Liddick)

Indirect studies: If single resonances or direct capture dominate (talk by Escher)

- Surrogate method (talk by Ratkiewicz)
- d,py neutron transfer

FRIB Will Address Reactions in Explosive Stellar Burning

Open Questions:

- What are the abundances of long-lived γ-ray emitters in supernova ejecta?
- What would observations with γ-ray observatories (e.g. future COSI) tell us about supernova physics?

Reaction	Impact	Isotope Affected
42 K(n, γ) 43 K	4.18	⁴³ K
$^{44}\mathrm{Ti}(\alpha,\mathbf{p})^{47}\mathrm{V}$	2.61, 1.31, 1.12 ^a	⁴⁴ Ti, ⁴⁸ V, ⁴⁹ V
⁴³ K(p,n) ⁴³ Ca	2.51	⁴³ K
59 Cu(p, γ) 60 Zn	2.16	⁵⁹ Ni
⁴² K(p,n) ⁴² Ca	2.13	⁴³ K
23 Na(α ,p) 26 Mg	2.12, 1.14, 1.13, 1.12 ^a	⁴³ K, ⁴⁷ Sc ⁴⁹ V, ⁵⁵ Fe
27 Al(α ,p) 30 Si	1.91, 1.58 ^a	⁴³ K, ⁴⁷ Sc
28 Al(p, α) 25 Mg	1.89, 1.37 ^{<i>a</i>}	⁴³ K, ⁴⁷ Sc
Reaction	Impact	Isotope Affected
47 Sc(n, γ) 48 Sc	1.88	⁴⁷ Sc
⁴⁷ Ti(n,p) ⁴⁷ Sc	1.85	⁴⁷ Sc
48 Cr(α ,p) ⁵¹ Mn	1.84, 1.16 ^a	⁴⁸ V, ⁵¹ Cr
51 Mn(p, γ) 52 Fe	1.76	⁵¹ Cr
41 K(p, α) ³⁸ Ar	1.72	⁴³ K
43 K(n, γ) 44 K	1.65	⁴³ K
46 Sc(n, γ) 47 Sc	1.55	⁴⁷ Sc
⁴⁶ Sc(p,n) ⁴⁶ Ti	1.45	⁴⁷ Sc
⁵³ Fe(n,p) ⁵³ Mn	1.41	⁵³ Mn
49 Mn(p, γ) ⁵⁰ Fe	1.34	⁴⁹ V
⁵⁵ Co(p,γ) ⁵⁶ Ni	1.32	⁵⁵ Fe
45 Ca(n, γ) 46 Ca	1.31	⁴⁷ Sc
32 S(n, α) ²⁹ Si	1.31, 1.29 ^{<i>a</i>}	⁴³ K, ⁴⁷ Sc
40 Ar(p, γ) 41 K	1.30	⁴³ K

Key reactions for broad range of γ-ray emitters identified (Hermansen et al. 2020)

Broad range of reactions needed:

(p,γ), (p,n), (p,α), (α,p) – techniques discussed so far (see talk by Perdikakis on p,n)

(n, γ), (n,p), (n, α) – techniques discussed so far n-rich isotopes T₁₂ 2 min – 160 d p-rich isotopes T₁₂ 0.3 s – 60 yr

→ Some long-lived enough suitable for harvesting/batchmode/sample production

Need Dedicated Data Efforts for Nuclear Astrophysics

- Dedicated efforts are needed to
 - Evaluate nuclear data for astrophysics
 - Transform nuclear data into data that can be used in astrophysics
 - USNDP data are key input
 - Combine experimental data, incl. resonance strengths, with theoretical data, compute astrophysical reaction rates, and correct for stellar environments (comments by Sharon yesterday)
 - Disseminate data so they can be easily accessed across field boundaries.
- Ongoing activities are very important but address only aspects and need to be greatly expanded
 - (JINA REACLIB, STARLIB, BRUSLIB, nu-Lib, nucastrodata.org, pynucastro,)
- A new development: URSA: Unified Reaction Structures for Astrophysics
 - Overcomes limitations from multiple formats and scattered data sources unified format-independent data flow for all nuclear data needed for astrophysics
 - Initially developed at LANL: T. Sprouse, M. Mumpower, O. Korobkin, J. Lippuner, J. Miller
 - Continued development (B. Cote) in international framework within IReNA (NSF AccelNet Network of Networks connects international nuclear astrophysics networks) – continued support will be critical

Conclusions

- Unprecedented opportunities at FRIB to advance reaction measurements for nuclear astrophysics to address open questions related to the origin of the elements, accreting neutron stars and other extreme astrophysical environments
 - Fast beams
 - Stopped beams (decays)
 - Reaccelerated beams ReA3 and ReA6
 - Standalone batchmode beams of long-lived species ReA3 and ReA6
 - Harvesting
- Need close collaboration between experimentalists and reaction theorists
- Need close collaboration between nuclear scientists, computational astrophysicists, observers, cosmo-chemists,
- Need dedicated data effort for nuclear astrophysics