Overview on Reactions on Unstable Nuclei for Astrophysics at FRIB
Hendrik Schatz
Michigan State University
Reactions on rare isotopes are critical for most astrophysical processes and are more important than ever.
FRIB will be a game changer.
FRIB Provides New Opportunities for Nuclear Astrophysics

- FRIB has completed all milestones and is on track for delivering first beams to experiments in Spring
- Unique opportunities for Nuclear Astrophysics

Final beam commissioning completed:

![Image of FRIB facility and commissioning data]
FRIB Provides Fast, Stopped, and Reaccelerated Beams

Fast Beams:
- Indirect reaction measurements (>~30 MeV/u)

Stopped Beams:
- Decays for indirect reaction methods
FRIB Provides Fast, Stopped, and Reaccelerated Beams

ReA3 reaccelerated beams:
- Direct measurements of astrophysical reaction rates (<\sim 3 MeV/u)
- Indirect measurements at low energy

Fast Beams:
- Indirect reaction measurements (>\sim 30 MeV/u)

Stopped Beams:
- Decays for indirect reaction methods

ReA6 beams:
- Indirect measurements
 - \sim 3-6 MeV/u

ReA Standalone Capability:
- ReA3 accelerator can run in parallel with FRIB LINAC
- Batchmode ion source for long lived (10+ days) radioactive beams available (also from FRIB harvesting)
- Beams so far: 7Be, 10Be, 32Si, and 26Al

Gas Stopping
- Reacceleration to low astrophysical energies
Need Accurate Nuclear Physics for X-ray Burst Models

New Era of Quantitative Analysis

Open Questions:
- What can burst light curves tell us about neutron stars in accreting systems?
- What isotopes are produced forming the neutron star crust

Needs:
\((p,\gamma)\) and \((\alpha,p)\) reactions, \(^{15}\text{O}(\alpha,\gamma)\)
FRIB Will Address X-ray Burst Reactions
(also needed for Novae, p-process, explosive Si burning in supernovae...)

- **Typical \(T_{1/2} \): seconds - minutes**
- **Direct reaction rate measurements with reaccelerated beams:**
 - \((\alpha,p)\): JENSA Gas Target, AT-TPC Active Target, MUSIC
 - \((p,\gamma)\): SECAR Recoil Separator
- **Indirect reaction measurements are also essential**
 - Some important resonances are too weak to be measured directly
 - Pave the way for direct measurements (some resonance properties need to be known)
 - Studies of narrow resonances (low level density):
 - \((d,n\gamma), (^3\text{He},d)\) p-transfer with fast beams (S800 spectrometer, GRETINA \(\gamma \)-array, LENDA n-detector) and with reaccelerated beams (ORRUBA Si-array, SECAR, SOLARIS spectrometer) – can use ANC method (also THM)
 - \((d,p)\) n-transfer on mirror for N=Z nuclei (ORRUBA)
 - \(\beta\)-decay, \(\beta\)-p decay (GADGET gas detector) to study resonance decay branches
 - Studies to improve Hauser-Feshbach calculations (high level density)
 - Level densities and strength functions
SECAR Recoil Separator Enables Direct Measurements of p, γ and α, γ-Astrophysical Reactions at FRIB

Notre Dame – MSU – LSU – Colorado School of Mines – ORNL – CMU- Ohio U collaboration

First recoil detection from $^{16}\text{O}(\alpha,\gamma)^{20}\text{Ne}$ concludes construction
FRIB Will Address Reactions for Heavy Element Nucleosynthesis

Open Questions:
- What are the relative contributions of these processes to the origin of the elements?
- What do the abundance patterns tell us about the physics of astrophysical environments?

<table>
<thead>
<tr>
<th>Seed Production</th>
<th>Neutron Production</th>
<th>n-capture</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>(α,n) reactions 13C, 22Ne, ...</td>
<td>(n,γ) stable and (t_{1/2}) days-years</td>
</tr>
<tr>
<td>(α,n) reactions</td>
<td>v-reactions, EOS</td>
<td>Very few (n,γ)</td>
</tr>
<tr>
<td>Stable & n-rich A = 68 - 98</td>
<td>(α,n) reactions 22Ne, ...</td>
<td>(n,γ) on (T_{1/2}) 2 min – 30 yr</td>
</tr>
<tr>
<td>-</td>
<td>v-reactions, EOS</td>
<td>(n,γ) on (T_{1/2}) 10 ms – 2 min</td>
</tr>
</tbody>
</table>

FRIB

Very few (n,γ) on \(T_{1/2} \) 2 min – 30 yr
FRIB Will Directly Measure (α,n) Reaction Rates for the Weak r-Process

Important reactions affecting the final abundances have been identified (Pereira et al. 2020, Bliss et al. 2020).

Direct measurement techniques for reaccelerated beams developed:

Neutron detection: MUSIC (Avila, Ong, et al.)

Recoil detection: HABANERO (Meisel, Montes, et al.)

Recoil + Neutron detection: SECAR + LENDA

Focal plane: 86Kr(α,$2n$)88Sr

With target neutron coincidence

Marshall, Meisel, Montes, et al.
Constraining Neutron Capture Rates on Unstable Nuclei at FRIB

Direct measurements:
• Long lived samples:
 • FRIB Harvesting
 • Transport to external n-beam facility
 • Future n-beam at FRIB?
• Far future: storage ring and n-target (see talk by Mosby)

Indirect studies: if HF is Applicable
• Improve HF calculations: strength functions, level densities (β-Oslo – see talk by Liddick)

Indirect studies: If single resonances or direct capture dominate (talk by Escher)
• Surrogate method (talk by Ratkiewicz)
• d,pγ neutron transfer
FRIB Will Address Reactions in Explosive Stellar Burning

Open Questions:
- What are the abundances of long-lived γ-ray emitters in supernova ejecta?
- What would observations with γ-ray observatories (e.g. future COSI) tell us about supernova physics?

Key reactions for broad range of γ-ray emitters identified (Hermansen et al. 2020)

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Impact</th>
<th>Isotope Affected</th>
</tr>
</thead>
<tbody>
<tr>
<td>42K(n,γ)43K</td>
<td>4.18</td>
<td>43K</td>
</tr>
<tr>
<td>44Ti(p,γ)44V</td>
<td>2.61, 1.31, 1.12g</td>
<td>44Ti, 46V, 49V</td>
</tr>
<tr>
<td>44K(p,n)44Ca</td>
<td>2.51</td>
<td>43K</td>
</tr>
<tr>
<td>58Ca(p,γ)59Zn</td>
<td>2.16</td>
<td>58Ni</td>
</tr>
<tr>
<td>41K(p,α)41Ca</td>
<td>2.13</td>
<td>43K</td>
</tr>
<tr>
<td>24Na(p,γ)24Mg</td>
<td>2.12, 1.14, 1.13, 1.12g</td>
<td>43K, 44Sc, 45V, 46Fe</td>
</tr>
<tr>
<td>27Al(p,γ)26Si</td>
<td>1.91, 1.58d</td>
<td>40K, 47Sc</td>
</tr>
<tr>
<td>28Al(p,α)25Mg</td>
<td>1.89, 1.37d</td>
<td>40K, 47Sc</td>
</tr>
</tbody>
</table>

Reaction | Impact | Isotope Affected |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>41Sc(n,γ)48Sc</td>
<td>1.88</td>
<td>47Sc</td>
</tr>
<tr>
<td>45Ti(n,p)45Sc</td>
<td>1.85</td>
<td>47Sc</td>
</tr>
<tr>
<td>48Cr(n,p)51Mn</td>
<td>1.84, 1.16d</td>
<td>48V, 51Cr</td>
</tr>
<tr>
<td>51Mn(p,γ)52Fe</td>
<td>1.76</td>
<td>51Cr</td>
</tr>
<tr>
<td>41K(p,α)38Ar</td>
<td>1.72</td>
<td>45K</td>
</tr>
<tr>
<td>43K(n,γ)43K</td>
<td>1.65</td>
<td>43K</td>
</tr>
<tr>
<td>46Sc(n,γ)47Sc</td>
<td>1.55</td>
<td>47Sc</td>
</tr>
<tr>
<td>46Sc(p,n)46Ti</td>
<td>1.45</td>
<td>47Sc</td>
</tr>
<tr>
<td>52Fe(n,p)55Mn</td>
<td>1.41</td>
<td>53Mn</td>
</tr>
<tr>
<td>49Mn(p,γ)50Fe</td>
<td>1.34</td>
<td>49V</td>
</tr>
<tr>
<td>52Co(p,γ)52Ni</td>
<td>1.32</td>
<td>53Fe</td>
</tr>
<tr>
<td>45Ca(n,γ)46Ca</td>
<td>1.31</td>
<td>47Sc</td>
</tr>
<tr>
<td>32S(n,α)28Si</td>
<td>1.31, 1.29d</td>
<td>43K, 47Sc</td>
</tr>
<tr>
<td>40Ar(p,γ)41K</td>
<td>1.30</td>
<td>43K</td>
</tr>
</tbody>
</table>

Broad range of reactions needed:
- (p,γ), (p,n), (p,α), (α,p) – techniques discussed so far
 (see talk by Perdikakis on p,n)
- (n,γ), (n,p), (n,α) – techniques discussed so far
 n-rich isotopes T_{12} 2 min – 160 d
 p-rich isotopes T_{12} 0.3 s – 60 yr

\Rightarrow Some long-lived enough suitable for harvesting/batchmode/sample production
Need Dedicated Data Efforts for Nuclear Astrophysics

• Dedicated efforts are needed to
 – Evaluate nuclear data for astrophysics
 – Transform nuclear data into data that can be used in astrophysics
 • USNDP data are key input
 • Combine experimental data, incl. resonance strengths, with theoretical data, compute astrophysical reaction rates, and correct for stellar environments (comments by Sharon yesterday)
 – Disseminate data so they can be easily accessed across field boundaries.

• Ongoing activities are very important but address only aspects and need to be greatly expanded
 – (JINA REACLIB, STARLIB, BRUSLIB, nu-Lib, nucastrodata.org, pynucastro,)

• A new development: URSA: Unified Reaction Structures for Astrophysics
 – Overcomes limitations from multiple formats and scattered data sources – unified format-independent data flow for all nuclear data needed for astrophysics
 – Initially developed at LANL: T. Sprouse, M. Mumpower, O. Korobkin, J. Lippuner, J. Miller
 – Continued development (B. Cote) in international framework within IReNA (NSF AccelNet Network of Networks connects international nuclear astrophysics networks) – continued support will be critical
Conclusions

• Unprecedented opportunities at FRIB to advance reaction measurements for nuclear astrophysics to address open questions related to the origin of the elements, accreting neutron stars and other extreme astrophysical environments
 – Fast beams
 – Stopped beams (decays)
 – Reaccelerated beams – ReA3 and ReA6
 – Standalone batchmode beams of long-lived species – ReA3 and ReA6
 – Harvesting

• Need close collaboration between experimentalists and reaction theorists

• Need close collaboration between nuclear scientists, computational astrophysicists, observers, cosmo-chemists,

• Need dedicated data effort for nuclear astrophysics