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We have robust reaction theories and flexible data evaluation tools to describe a wide
variety of reactions
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Predictive power of reaction calculations is limited...
... and this provides an opportunity for indirect reaction methods

= Challenges:
— Ambiguous model combinations, large parameter uncertainties, and multiple
reaction channels produce large uncertainties in reaction calculations
— Away from stability, where few/no constraints are known, minor processes

may become significant

Stable nuclei

Needed — a multipronged approach: ;
— development of predictive microscopic structure and reaction theories
— direct measurements (where possible) to validate theory |

50

— indirect measurements to constrain theory

Number of Protons

rp-process
r-process

Nuclei known
to exist

Opportunities with indirect reactions: -
— Provide specific ingredients for theory, constrain parameters and components

Of the theory T Number of Neutrons
— Provide new insights into reaction mechanisms and test our overall

understanding of nuclear structure and reactions

neutron star processes
supernova cores
s-process

82 126

Examples:
— charged-particle inelastic scattering and transfer reactions to determine n-

induced CN cross sections
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Oslo method produces compound nucleus and extracts y strength function and level density
from measured y decay spectra

= Principle: v emission probabilities in matrix form
— Transfer reactions and inelastic scattering produce compound
nucleus (CN) of interest
— Measure y-decay probabilities
— Establish connection to product of y strength function (ySF)
and level density (LD), then disentangle
— Use ySF and LD in HF calculation of neutron capture reaction

P(E,,E;)
,O(Ef=E,' - E/).r(E/)

= Challenges: y

— Separation of ySF and LD is ambiguous, requires auxiliary
information

— Electric and magnetic ySFs are not distinguished in the

experiment |

— Effects of spin and parity on decay of compound nucleus (CN) I’L | | E,

— Does the system equilibrate? |

= Theory developments:
— Incorporating spin-parity predictions to improve analyses
— Statistical uncertainty propagation Goriely, EPJA 55, 172 (2019)
— Needed: Auxiliary information to separate ySF and LD
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B-Oslo method measures B-delayed nucleus y emission and extracts y strength function

and level density

= Principle:
— Produce nucleus of interest via 3 decay
— Analysis analogous to traditional Oslo method
— Advantage: ability to reach nuclei far from stability

= Challenges:
— Separation of y strength function and level density is
ambiguous, requires auxiliary information
— [ decay is very selective
— Few spins populated
— Does the system equilibrate?

= Theory developments:
— Integrating  decay theory with y emission
description
— Needed: Testing nuclear structure effects
— Needed: Understanding compound-formation after [3
decay and signatures

B decay of 76Ga, followed by y emission

2 VLA

3
(3)
(1,2)

3(+)

7ﬁGe

Larsen, PPNP 107, 69 (2019)

Lawrence Livermore National Laboratory
LLNL-PRES-xxxxxx

' (2748
N A S‘m 5
=4

National Nuclear Security Administration



Surrogate reactions method combines theory and experiment to constrain cross section
calculations for compound reactions

= Principle:

— Transfer reactions and inelastic
scattering produce compound nucleus
(CN) of interest

— Theory provides formation cross
section for CN

— Combine theory & experiment to
obtain desired cross section

= Challenges:
— Calculate spin & parity properties of
doorway state in surrogate reaction
— Does the system equilibrate?

= Theory developments:

— Describe mechanisms for populating
doorway states, for inelastic scattering
and transfers

— Integrate with decay modeling

— Bayesian parameter inference

Problem: 87Y(n,y)
calculations are highly
uncertain

Neutron capture

"~

1
87Y

unstable

Solution: Constrain

calculation with
surrogate data

Surrogate reaction

P
89y From To be
stable theory determined
Y / t
A Surrogate experiment gives |

_—7

From
experiment

/

87Y(n,y) cross section:

Oy = zd,n Gn+targetCN (E,Jﬂt) : GCNY(E,J,TC)

AN

P(P,dY) (E) =ZJ,7[ F(p,d)CN(E,J,TC)'GCNY(E,J,TE) \

%

/

The new cross
section we want

N\

Well modelled from
nuclear theory
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Surrogate (p,d) transfer reactions enable determination of unknown (n,y) reaction cross

sections

= QOpportunities:

— Important (n,y) reactions become accessible

— Wide range of ‘equivalent neutron energy’ is measured with fixed beam energy
— Example: 8Y(n,y) from Y(p,dy) data
— Isomer cross sections accessible -
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= Challenges: ' E_ [MeV]

— Nucleon removal produces holes deep in nucleus
— Nucleon removal is accompanied by inelastic excitations
— Experiments often measure decay signatures that require additional modeling

= Theory developments:

— Leverage dispersive optical model parametrization to describe hole structure

— Implement two-step reaction description to incorporate inelastic effects
— Integrate nuclear decay scheme

Surrogate (p,d) reaction

Surrogate
target

(

Surrogate
target

89Y(p,d) similarly

First-order processes:
* neutron pickup makes
deep hole

+ Reaction calculation uses
DWBA with S; from DOMP

DWBA: Distorted-Wave Born
Approximation

Second-order processes:

* Inelastic scattering preceeds
or follows neutron pickup

Eor
(p,p’,d)
g:
N\ il
T ?
O+

(p,d’,d) analogously
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Surrogate (d,p) transfer reactions enable determination of unknown (n,y) reaction cross

sections

= QOpportunities:

— Important (n,y) reactions become accessible.

— Inverse-kinematics experiments at radioactive beam
facilities

— Examples: ®>Mo(n,y), >>Sr(n,y)

= Challenges:

— Multiple reaction processes lead to observation of
proton, while only breakup-fusion is relevant
— Decay modeling required

= Theory developments:

— Describe deuteron breakup and propagation in nuclear
field

— Describe neutron absorption with optical model
potential

— Formalism to be extended to deformed systems

Surrogate (d,p) reaction
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Application to ®>Mo: Ratkiewicz et al, PRL 122, 052502 (2019)
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breakup

breakup &
partial fusion

Complete
fusion &
evaporation
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Surrogate reactions — Using inelastic scattering
to determine unknown (n,n’) and (n,2n) reaction cross sections

= Opportunities:
— Important (n,n’) and (n,2n) reactions become
accessible. Examples: 8Y(n,2n), 1%8Tm(n,2n)
— Obtain multiple desired reaction cross sections
simultaneously
— Inverse-kinematics experiments at radioactive beam
facilities

= Challenges:
— Compound nucleus highly excited
— Multiple intermediate nuclei involved
— Non-statistical effects expected

= Theory developments:
— Integrate structure theory into description of surrogate
reaction (QRPA, deformation, coupled channels)
— Complement studies of (exotic) collective excitations
— Study CN formation and pre-equilibrium emission
— Opportunity: revisit fission applications

Unknown 88Y(n,2n) cross section from inelastic scattering
Surrogate reaction

3 , 3
89y* He He

88y* . 39Y
87y *
Y . / stable
® -
%y

Y
n_~ \_'_l
%V ‘—'—’ Nucleus of interest

88
‘—'—’ Nucleus of interest For *¥(n,y)

88
Nucleus of interest For *Y(n,n’)

88
For *¥(n,2n) Benchmark: °0Zr(n,2n) cross section is known
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Inelastic scattering and transfer reactions provide insights into the fission process

Schematic view of fission

Fission barriers from surrogate data

Back, EPJConf. 232, 03002 (2020) B

Describing fission challenges theory (and experiment) 0 s
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Moving far from stability brings additional challenges for theory

Challenges away from stability:

— Extrapolations become unreliable: optical models, y strength
functions, level densities

— Uncertainties are unknown: need to go beyond ‘plugging in’
all different models supplied by HF codes

— Statistical descriptions are limited to regions of high level

density

Opportunities:
— Inverse-kinematics experiments at radioactive beam facilities

Needs:

— Develop and incorporate information from microscopic
theories

— identify suitable experiments to validate and inform theories

Z (number of protons)

120

TENDL 2017 neutron libraries

TENDL-2017 [2813 (544) targets (isomers)]
EAF-2010 [816 (77) targets (isomers)]
255 stable nuclides

60 80 100 120 140 160 180

N (number of neutrons)

Koning, NDS 155, 1 (2019)
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Number of Protons

\

Nuclei known
to exist

rp-process
r-process

neutron star processes
supernova cores
s-process
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Indirect methods for direct and resonance reactions

= Challenges: Closer to drip lines, we will face situations

— Cross sections for charged-particle reactions similar to those we see now in lighter nuclei...

become vanishingly small at low energies
— Screening effects in astrophysical . Dt —
environments and the lab are different Ip——
O 2+
= Opportunities: — 1 T11.093 MeV
— ANC method (Asymptotic Normalization Constant) ——F——  ®Mg+n
— Trojan-Horse method 10.615 MeV !
— Coulomb dissociation GE=he 26Mg+y
= Theory developments: "26 E,=0 MeV
— Reduce model dependence of results Mg
— Provide overall consistent descriptions Massimi et al, PLB (2017)
— optiFe:I models for nucleons and composite ...but with less structure knowledge!
particles
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Developing indirect reaction methods provides benefits for theory, experiments, and
applications

= Theory and experiment are closely connected and rely on each other -
this is particularly true for indirect reaction studies

= Having complementary indirect methods is important as no one approach
covers all needs and cross-checks are needed

= Fully developing indirect methods will
— test our nuclear structure and reaction theories
— further our understanding of the underlying reaction mechanism
— allow us to determine important unknown cross sections
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Thank you!
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Hauser-Feshbach formalism for compound reactions

0y (B) = ) 0§V(E,],m) G5V (E,],m)

T

Formation of CN

oSN(E, ], m) = mA, w,, Z s

Probability for decay of CN

o T) U
Need GEN (E,J,m) = s’ s prU)
: : v ’ 1arr 11 T 1y rr m(y dE."
* Transmission coefficients T, for all channels y: Lpw's" | Tyrpsr P17 (U) dEy
neutron, proton, charged particles, , fission

* |evel densities
* Discrete levels with J, 7

* Width fluctuation correction WFC factors
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Neutron capture reactions

Neutron capture cross section [b]

(n,y) cross sections

for select stable isotopes (ENDF/B-VII)
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Hauser-Feshbach formalism: o, = ZJ 7 0N (E,J,m) - GCNX(E,J,n)
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