

Member of the US Nuclear Data Program

Improving Nuclear Data for Antineutrino Spectra Predictions for Nonproliferation Applications

F.G. Kondev

Physics Division, Argonne National Laboratory

Nuclear Physics

FOA-LAB17-1763

NA-22

WANDA2022 (virtual) meeting, March 4, 2022

Objective: improve Nuclear Data for key nuclei relevant to antineutrino spectra predictions

applications

- detection of fissile materials from peaceful & military program
- remote safeguards and monitoring of operation status and power levels of reactors
- remote fission inventories in operating reactors

The New York Times

How to Spot a Nuclear Bomb Program? Look for Ghostly Particles

By Kenneth Chang

March 27, 2018

compelling physics

- physics beyond the Standard Model
- astrophysics supernovae core collapse & big bang nucleosynthesis
- neutrinoless double beta decay
- reactor anomaly & v oscillations

Nuclear Data Needs

International Atomic Energy Agency

Nuclear Data Services

Provided by the Nuclear Data Section

INDC(NDS)-0676 Distr. EN, ND

INDC International Nuclear Data Committee

~30 FP radionuclides grouped into priority I and II

How to improve the needed ND?

- unique capabilities of CARIBU@ANL (DOE/SC/NP National User Facility) to produce high-purity beams of essentially all fission products – no stop-overs for refractory elements
- state-of-the-art detector equipment Gammasphere

CARIBU @ ANL

Gammasphere decay data station

Advantages

- discrete & calorimetry γ-ray spectroscopy techniques within a single device
- high granularity & resolving power ($\Delta E\gamma = 2 \text{ keV}$, P/T~60% and $\epsilon_{\gamma} \sim 85\%$) ability to resolve week γ -ray cascades (10⁻⁵-10⁻⁶%)
- complete decay schemes angular correlations for transition multipolarities & Jπ assignments - end game in nuclear spectroscopy

HEART - HExagonal ARray for Triggering

 ✓ 6 EJ-204 plastic scint. & 12 SiPM
 ✓ ε_β~75% from β-γ singles & coin.

 powerful γ-γ-β-t coincidence device

Project status: experiments

- Designed and built a new decay data station at Gammasphere (FY18)
- Completed three experimental campaigns:
 - December 2018 (FY19) aimed at transitional (weakly-deformed) ¹⁴⁴La, ^{146g,m}La, ¹⁴⁴Ba, ¹⁴⁶Ba and ¹⁴⁶Ce nuclei
 - December 2019 (FY20) aimed at welldeformed ^{102g,m}Nb, ^{104g,m}Nb, ¹⁰²Zr, ¹⁰⁴Zr, ¹⁰²Mo and ¹⁰⁴Mo nuclei
 - December 2021 (FY22) aimed at ⁹⁸Y & ⁹⁸Nb
- Complementary nuclear data were obtained using the Canadian Penning Trap (CPT) & the X array (5 Ge CLOVER detectors)

CPT

X array

Project status: data analysis

- analysis of experimental data extensive timecorrelated, multi-parameter gamma-ray data analysis with the main aim at constructing complete decay schemes with associated level energies, quantum numbers and lifetimes, and determination of gamma- and beta-ray branching ratios:
 - partial analysis of ¹⁴⁴Ba and ¹⁴⁶Ba data is completed & published; analysis of ¹⁰²Mo, ¹⁰⁴Mo, ¹⁰²Zr and ¹⁰⁴Zr data is continuing
 - ✓ analysis of ^{160m,g}Eu data is completed & published
 - analysis of ¹⁴⁴La data is completed no isomer was observed in this nuclide and the nuclear data was considerably improved
 - analysis of ^{146m,g}La data is completed we were able to separate for the first time the decay of the ground state and the isomer
 - analysis of ^{102m,g}Nb and ^{104m,g}Nb data is continuing
 - analysis of the newly collected data on ⁹⁸Y and ⁹⁸Nb just started

Recent publications:

EPJ Web of Conferences 223, 01028 (2019)

Masses and Beta-decay Studies of Neutron-rich Nuclei using the X-array and Gammasphere

F.G. Kondev^{1,*}, D.J. Hartley², R. Orford^{1,3}, J.A. Clark^{1,4}, G. Savard^{1,5}, K. Auranen¹, A.D. Ayangeakaa^{1,2}, S. Bottoni^{1,6}, M.P. Carpenter¹, P. Copp¹, K. Hicks², C.R. Hoffman¹, R.V.F. Janssens⁷, B.P. Kay¹, T. Lauritsen¹, J. Li¹, S.T. Marley⁸, G.E. Morgan⁸, G. Mukherjee⁹, S. Nandi⁹, W. Reviol^{1,10}, J. Sethi^{1,11}, D. Seweryniak¹, S. Stolze¹, J. Wu¹, R. Yadav¹², and S. Zhu¹

PHYSICAL REVIEW C 101, 044301 (2020)

High-K, two-quasiparticle states in ¹⁶⁰Gd

D. J. Hartley, ¹ F. G. Kondev, ² G. Savard, ² J. A. Clark, ² A. D. Ayangeakaa, ^{2,*} S. Bottoni, ^{2,†} M. P. Carpenter, ² P. Copp, ^{2,3} K. Hicks, ¹ C. R. Hoffman, ² R. V. F. Janssens, ^{4,5} T. Lauritsen, ² R. Orford, ^{6,‡} J. Sethi, ^{2,7} and S. Zhu, ^{2,§}

PHYSICAL REVIEW C 102, 011303(R) (2020)

Rapid Communications

Spin-trap isomers in deformed, odd-odd nuclei in the light rare-earth region near N = 98

R. Orford,^{1,2,*} F. G. Kondev[●],¹ G. Savard,^{1,3} J. A. Clark,^{1,4} W. S. Porter[●],^{1,†} D. Ray,^{1,4} F. Buchinger,² M. T. Burkey,^{1,3,‡} D. A. Gorelov[●],^{1,4} D. J. Hartley,⁵ J. W. Klimes[●],^{1,5} K. S. Sharma[●],⁴ A. A. Valverde[●],^{1,4} and X. L. Yan[●],^{1,6}

Project status: data analysis - cont.

spin-traps isomers in deformed nuclei resulting from the residual π – ν interactions

- unique capabilities at ANL to study long-lived, beta-decaying isomeric states
 - direct mass-spectrometric techniques excitation energy of the isomer
 - **✓** comprehensive β –γγ(CE)-*time* coincidence studies with Gammasphere decay station

Project status: data analysis - cont.

N. Giha, University of Michigan PhD student (summer of 2021)

resolved gs and isomer decays
new levels and transitions
new Jπ and configurations
new nuclear structure interpretation - deformed shell model

analysis is completed – results were presented at the 2021 APS/DNP meeting (October 2021) & are prepared for publication in the journal **Physical Review C**

Collaborators

Argonne National Laboratory:

M.P. Carpenter, J. Clark, P. Copp, F.G. Kondev, T. Lauritsen, S. Nandi, W. Reviol, D. Santiago-Gonzalez, G. Savard, D. Seweryniak, F. Tovesson, M. Oberling, J. Anderson, R. Knaak, & B. DiGiovane

LSU: S. Marley, E. Zganjar, G.E. Morgan, G. Willson

US Naval Academy: D.J. Hartley

University of Michigan: N. Giha, S. Pozzi

VECC, Kolkata G. Mukharjee

LOUISIANA STATE UNIVERSITY

