Improving the Nuclear Data on Fission Product Decays at CARIBU

Project Report at WANDA 2022 March 4, 2022

D.E.M. Hoff

hoff8@llnl.gov

Lawrence Livermore National Laboratory

Joint Proposal of LLNL and ANL

FY18-22

DOE/NNSA/ DNN R&D (NA-22)

Kay Kolos Research scientist Project co-Pl

Nick Scielzo
Research scientist/
Deputy Group Leader

Daniel Hoff
Postdoc

Wei Jia Ong Staff Scientist

Funded by DOE Office of Nuclear Physics/ Nuclear Data

Guy Savard ATLAS Director Project co-Pl

Filip Kondev
Principal Physicist

Mike Carpenter

Physicist- Experimental GL

Jason Clark
Physicist

Our Collaborators

LLNL: M. A. Stoyer, A.P. Tonchev, K. J. Thomas, A. Gallant, M.T. Burkey

TAMU: V. E. Iacob, J.C. Hardy, D. Melconian, H.I. Park

ANL: P. Copp, M. Gott, J. Rohrer, D. Santiago-Gonzalez, A. Valverde

UC Irvine: A.M. Hennessy, E. Heckmaier, A.J. Shaka

UC Berkeley: B. Champine, T. Nagel, E.B. Norman, L. Bernstein

BNL: S. Zhu

UTK: K. Siegl

LBNL: R. Orford

The Goal of this Project is to Perform Detailed Studies of Key Fission-Product Decay Properties

Nuclear Data Impacts Understanding of Nuclear Events:

Fission-product isomer-to-g.s. ratios and masses Understanding of fission dynamics and angular momentum

Measurements of short-lived fission products

- 132m/132Sb isomer to g.s. ratio & mass measurements
- 128m/128Sn and 128m/128Sb isomer to g.s. ratios & mass measurements

Beta-delayed γ-ray branching ratios

Nuclear data for fission yields - impacts nuclear forensics

Precision branching ratio of long-lived fission products of the importance to nuclear forensics

- ¹⁵⁶Eu precision decay measurement
- Improved Geant4 simulations
- Planning to collect 161Tb & 111Ag in the spring

¹⁵⁶Gd

Isotope	Half-life [days]	γ-ray energy [keV]	Current branching ratio [%]
¹⁵⁶ Eu	15.2	811.8	(9.7±0.8)
¹⁶¹ Tb	6.9	74.6	(10.2±0.5)
¹¹¹ Ag	7.5	342.1	(6.68±0.33)
¹²⁷ Sb	3.85	685.5	(3 <u>6</u> .8±2.0)

Uncertainties of the order of 5-10% need to be remeasured

CARIBU Opens Up Opportunities to Study Decays of Fission Products

CAlifornium Rare Isotope Breeder Upgrade ²⁵²Cf spontaneous fission source

Mass-separated beams of any fission product with $t_{1/2} > 25 \text{ ms}$

G. Savard, R. Pardo. Proposal for the ²⁵²Cf source upgrade to the ATLAS facility. (2005)

CPT Measurements

Precision Branching Ratio Measurements

We're Working with ANL to perform Isomer Mass Measurements

→ Identify isomer and ground state by mass, this method is independent on decay properties

Mass and energy: $E = mc^2$

$$E + \Delta E_{isomer} = (m + \Delta m_{isomer})c^2$$

 \rightarrow ions in the strong magnetic field of a Penning trap, where the frequency of the ion's cyclotron motion depends on the mass of the ion

Isomer mass measurements of 132,132mSb

→ ions ejected from the trap and transported to a position-sensitive detector

Preliminary result: $^{132\text{m}}$ Sb ΔE =145.6(1.1) keV

We're Working with ANL to perform Isomer Mass Measurements

→ Identify isomer and ground state by mass, this method is independent on decay properties

Mass and energy: $E = mc^2$

$$E + \Delta E_{isomer} = (m + \Delta m_{isomer})c^2$$

→ ions in the strong magnetic field of a Penning trap, where the frequency of the ion's cyclotron motion depends on the mass of the ion

Isomer mass measurements of 128,128mSb and 128,128mSn

→ ions ejected from the trap and transported to a position-sensitive detector

Preliminary result: 128m Sb ΔE = 47(2) keV First Measurement!

Precision Branching Ratio Measurements of Longlived Fission Products

→ Many long-lived fission products measured in 60s and 70s have high uncertainties on decay branching ratios

Sample harvesting

→ Implant mass-separated radioactive ion beam on thin carbon foil at CARIBU (ANL)

Decay measurement

 $\rightarrow \beta$ detection and γ -ray spectroscopy at TAMU

Method described in K. Kolos et al. "New approach to precisely measure γ-ray intensities ..." NIM A 1000, 165240 (2021)

We Collected High-quality Data for 156Eu

- Data collected with precisely calibrated β-γ coincidence detection setup
- → data collected during 7 days

γ-ray energy	$I_{\gamma}(\text{NNDC})$	Uncert. [%]
88.97	8.4(11)	13.1
599.47	2.08(17)	8.2
646.29	6.3(5)	7.9
723.47	5.4(4)	7.4
811.77	9.7(8)	8.3
1065.14	4.9(4)	8.2
1079.16	4.6(4)	8.7
1153.67	6.8(6)	8.8
1154.08	4.7(4)	8.5
1230.71	8.0(7)	8.7
1242.42	6.6(5)	7.6
1965.95	3.9(3)	7.7
2026.65	3.3(3)	9.1
2186.71	3.5(3)	8.6

- → Uncertainties >5%
- → Previous measurements used neutron capture from reactors i.e. much dirtier spectrum.

We Collected High-quality Data for 156Eu

 Data collected with precisely calibrated β-γ coincidence detection setup

→ data collected during 7 days

→ ¹⁵⁶Eu provides a unique simulation challenge

→ Simulations now tracks gamma rays emitted allowing for easier calculations and run on LLNL supercomputers

We Collected High-quality Data for 156Eu

- Data collected with precisely calibrated β-γ coincidence detection setup
- → data collected during 7 days

156Eu
112Ag
• e+e157
• e+e179
• 156Eu
179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
• 179
•

With our technique we were able improve ¹⁵⁶Eu decay data and reach sub-1% precision!

→ Comparison of current (NNDC) evaluated data with our results for γ-ray branching ratios

CARIBU Will Be Changing to nuCARIBU

Results Dissemination and Outlook

We publicize our results at workshops, conferences, reviews:

- -Independent Review in November 2020
- -APS DNP 2021/2022

Publications:

K. Siegl, K. Kolos, N. D. Scielzo et al. "Beta-decay half-lives of ^{134,134m}Sb and their isomeric yield ratio produced by the spontaneous fission of ²⁵²Cf" PRC 98, 054307 (2018)

K. Kolos, A. M. Hennessy, N. D. Scielzo et al. "New approach to precisely measure γ -ray intensities for long-lived fission products, with results for the decay of 95 Zr" NIM A 1000, 165240(2021)

- + Working on publication of ¹⁵⁶Eu (D.E.M. Hoff)
- + More from CPT measurements

Worked with many graduate students:

- Kevin Siegl (Notre Dame), B. Champine and Tyler Nagel (UC Berkeley), A. Hennessy and E. Heckmaier (UC Irvine), Erin Good (LSU), Benjamin Schroeder (TAMU)

Looking for new graduate students!

→ More experiments to come: isomeric-to-g.s. with the CPT and precision decay studies of long-lived FP branching ratios