Advanced Exploration Systems RadWorks - Radiation Protection Technologies

Advanced Neutron Spectrometer on the International Space Station (ANS-ISS)

Mark Christl NASA/MSFC WANDA March 2022, Virtual mark.christl@nasa.gov

ANS Technology Demonstration

- Element of the Dosimetry Project/Advanced Exploration System Program
- Objective: Develop candidate neutron spectrometer for exploration missions
- Conduct ground-based testing and spaceflight technology demonstration to evaluate performance
 - Launch to ISS: Oct 2016
 - Primary operations: Dec 2016-June 2017:

location: USLab, Node1, Node2

- Extended operations: Sept 2017 present
- Data analysis: On going

ANS neutron detection concept

Composite Scintillator

Clear neutron identification

Fabrication

Fiber array: 72×73 fibers 120 um dia. 1 mm spacing 15 cm length

ANS-ISS

Ground based evaluation

Gamma-ray induced trigger

Test		False CPS
20 cm	(.638620)/290	6.20E-05
0 cm	(.746615)/4933	2.70E-05

Detector signal calibration to gamma-rays

Compton edge corrected for scintillation saturation

ANS Efficiency Determination (with random coinc. correct.)

ANS response Neutron Energy vs Scintillation Photons

Flight data evaluation

Neutron Capture Time Distribution In Flight

Proton Recoil Signal Distribution In Flight

Neutron Spectra In Flight

ISS Node2 NonSAA: Exposure 556 kSec Period 228: Feb 17-24, 2022

The SAA region contributes 6% of the exposure

Exposure onboard the ISS

Dec. 27, 2017: International Space Station Configuration. Four spaceships are parked at the space station including the SpaceX Dragon space freighter, the Progress 68 resupply ship and the Soyuz MS-06 and MS-07 crew ships.

Altitude 254 mi.; Inclination 51.6°; Orbit period 90 min.

ANS-ISS Deployments

USLab Dec 2016-Feb 2017

Node 1 Feb-April 2017

Node 2 April-June 2017

Node 1 Sept 2017-18

USLab Sept 2018-2019

Columbus April 2021-22

ANS-ISS Nov 9-16, 2017

Neutron trigger rate (log scale, 10-sec averages, Hz)

South Atlantic Anomaly (SAA)

5 consecutive orbits at Southern Latitudes (Node1)

RTC

Estimation of false trigger susceptibility (high latitude region)

 $130/406000 = 3.2x10^{-4}$ susceptibility

Cs 343/7,524,080=4.56x10^-5 estimated (lab)

Note: no obvious way to assess susceptibility in normal or SAA portion of orbit

Forward

- Continue ANS exposures on the ISS for ~1 more year, covers 50% of the solar cycle then stow for future needs
- Extend energy reach beyond 20 MeV to cover higher energies: Time-of-Flight seems to be amenable to ~100 MeV using somewhat modest resources and current technologies, requiring 1 ns timing resolution at 50 cm pathlength

Mitchell, J.G., et al., "Performance Characteristics of the Ionosphere Neutron Content Analyzer (INCA)", 36th ICRC, Madison, WI, 2019

note: unfortunately ElaNa 41 suffered a catastrophic event deployment