

Bayesian inference for heavy-ion collisions with JETSCAPE

SciDAQ Discussion

Raymond Ehlers¹ Peter Jacobs¹ James Mulligan¹ 26 January 2022

¹Lawrence Berkeley National Lab/UC Berkeley

Heavy-ion collisions and the quark-gluon plasma

- At high temperatures, hadrons melt into their constituent quarks and gluons
 - Transition from hadronic to partonic degrees of freedom
- The quarks and gluons are deconfined in a strongly coupled state known as the Quark Gluon Plasma (QGP)
- Phase transition occurs around a temperature of $T \sim 150 \text{ MeV}$
- Trajectories through the phase-space are experimentally accessible in heavy-ion collisions

 Aim to understand QGP properties, structure

Heavy-ion collisions and the quark-gluon plasma

- Collisions can be described via different phases

- Wealth of observables and theories, but difficult to model and disentangle
- JETSCAPE collaboration of experimentalists, theorists, statisticians, CS to develop multi-stage model, detailed tools for data-theory comparison

Bayesian parameter estimation

Extraction of jet transport coefficient \hat{q}

- Recently extracted the jet transport coefficient, q
 , characterizing the momentum transfer between a propagating parton and the QGP.
- Utilize Bayesian Parameter Estimation to constrain model parameters

Raymond Ehlers (LBNL/UCB) - 26 January 2022

Phys.Rev.C 104 (2021) 2, 024905 Phys.Rev.Lett. 126 (2021) 24, 242301 5 Phys.Rev.C 103 (2021) 5, 054904

Extraction of jet transport coefficient \hat{q}

- Recently extracted the jet transport coefficient, q
 , characterizing the momentum transfer between a propagating parton and the QGP.
- Utilize Bayesian Parameter Estimation to constrain model parameters

Raymond Ehlers (LBNL/UCB) - 26 January 2022

Phys.Rev.C 104 (2021) 2, 024905 Phys.Rev.Lett. 126 (2021) 24, 242301 6 Phys.Rev.C 103 (2021) 5, 054904

Extraction of jet transport coefficient \hat{q}

- Recently extracted the jet transport coefficient, q
 , characterizing the momentum transfer between a propagating parton and the QGP.
- Utilize Bayesian Parameter Estimation to constrain model parameters

Raymond Ehlers (LBNL/UCB) - 26 January 2022

Phys.Rev.C 104 (2021) 2, 024905 Phys.Rev.Lett. 126 (2021) 24, 242301 7 Phys.Rev.C 103 (2021) 5, 054904 7

Looking towards the future

- Still much to be done for data-model comparison in heavy-ion collisions
 - Next generation analysis are in progress
- Major challenge due to high required computing time
 - Hit limits of HPC allocations
- More efficient emulation is critical!
- Transfer learning
- Multi-fidelity models
- Improved handling of correlated errors between observables
- $\rightarrow~$ See Simon's talk

Backup

Extraction of soft sector parameters

Extracted posteriors

Temperature-dependence of specific shear and bulk viscosities

Extraction of soft sector parameters

Extracted posteriors

Provide relative comparison of 3 particlization models

