Bayesian Analyses in CUORE and CUPID

Yury Kolomensky UC Berkeley/LBNL January 26, 2022

CUORE and **CUPID**

CUORE: Array of 988 TeO₂ crystals

- 19 towers suspended in a cylindrical structure
- 13 levels, 4 crystals each
- Operating now to ~2024 at LNGS

CUPID: next-generation upgrade

 Array of 1596 crystals, dual readout of heat and light (3306 channels in total)

Low event rates (~3 mHz/channel)

- Operating 24x7 for ~10 years
 - Would still expect O(10⁹) events when all is said and done

Bayesian analysis by default

• E.g. $0\nu\beta\beta$ and background model

LOTS of nuisance parameters

01/26/2022

Yury Kolomensky: CUORE & CUPID

- Total exposure in TeO₂: 372.5 kg*y
- Bayesian Analysis (BAT)

Likelihood model: flat continuum (BI), posited

<u>Systematics</u>; repeat fits with nuisance parameters, allow negative rates (<0.4% impact on limit)

• Nuisance parameters for each channel-dataset (>10⁴)

Detector Performance Parameters

Phys. Rev. Lett. 124, 122501 (2020)

2vββ decays, Background Model

Reconstruct CUORE continuum background

GEANT4 simulation + measured detector response function to produce expected spectra

62 sources considered, Bayesian fit with flat priors (JAGS)

Exploit coincidences & detector self-shielding to constrain location of sources

CUORE

Ω----**4**-----**4**-----**4**-----**4**-----**4**------**1**30Te 2vββ posterior p.d.f.

• Unconstrained fallout products (⁹⁰Sr)

* Phys. Rev. C. 85, 034316 (2012)

Reconstructed Spectrum (Multiplicity 1)

Reconstructed Spectrum (Multiplicity 1)

CUOBE data M1 (300 7 kgy

10

CUORE/CUPID Issues

- In full glory, O(10⁹) events, perhaps O(10⁶) nuisance parameters
 Bayesian analysis is most natural here
- Fully Bayesian fits, with the full evaluation of systematic errors due to the uncertainties of the nuisance parameters quickly become untenable
 - Would be interested in optimization of MCMC, but clearly need a qualitative change in how these fits are done
 - Would also be interested in development of common tools and frameworks for applications for NP