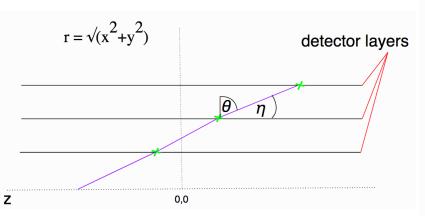
- Single pion p = 1GeV, φ = 0 rad, θ = 0.157 rad (η = 2.5)
 - \bullet q/p systematically higher, θ systematically higher, ϕ systematically lower

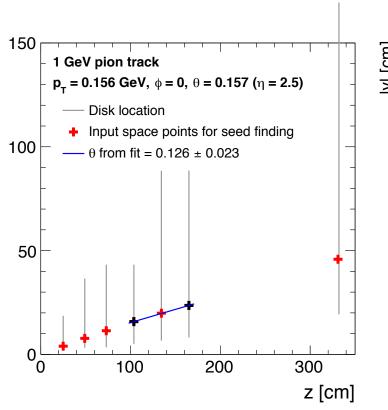
```
acts_seeding_init DEBUG /global/project/projectdirs/m3763/wenqing/eic/juggler/JugTrack/src/components/TrackParamACTSSeeding.cpp:435: iseed = 0, 4, 107.021, -18.8706, 249.865 acts_seeding_init DEBUG Seed components (sp index) for seed 0 is 1432689727, 3, 5 acts_seeding_init DEBUG Estimation of track parameters for seed 0 is with q/p 2.10718 phi -0.221514 theta 0.337566 and charge 1
```

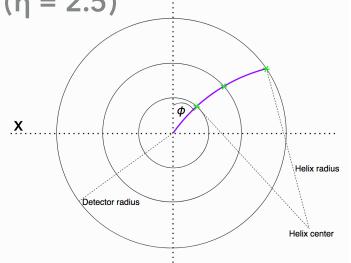
- Single pion p = 1GeV, φ = 0 rad, θ = 0.157 rad (η = 2.5)
 - ϕ q/p systematically higher, θ systematically higher, ϕ systematically lower
 - Invalid index of measurement forming the seed

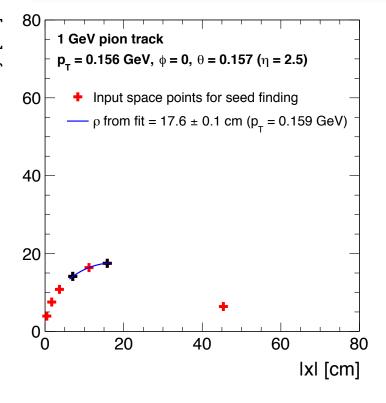
Invalid index of input space points!!!

```
acts_seeding_init DEBUG /global/project/projectdirs/m3763/wenqing/eic/juggler/JugTrack/src/components/TrackParamACTSSeeding.cpp:435: iseed = 0, 4, 107.021, -18.8706, 249.865 acts_seeding_init DEBUG Seed components (sp index) for seed 0 is 1432689727, 3, 5 acts_seeding_init DEBUG Estimation of track parameters for seed 0 is with q/p 2.10718 phi -0.221514 theta 0.337566 and charge 1
```

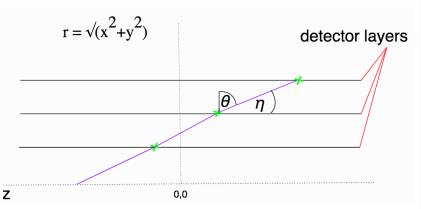

Single pion p = 1GeV, ϕ = 0 rad, θ = 0.157 rad (η = 2.5)

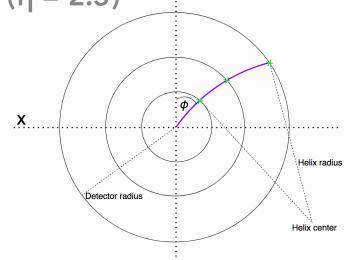

Sinple model to reconstruct θ


Assume homogeous magnetic field


Input points looks

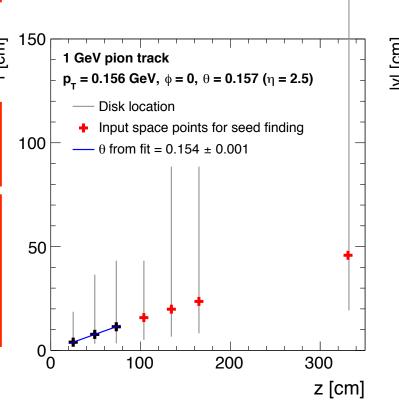
reasonable

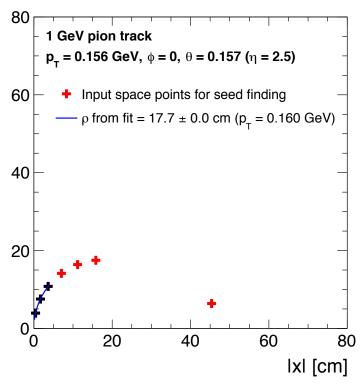




Single pion p = 1GeV, ϕ = 0 rad, θ = 0.157 rad (η = 2.5)

Sinple model to reconstruct θ


Assume homogeous magnetic field



Input points looks reasonable

Triplet with points with homogeous magnetic field preferred

- For the issue with invalid index of input point inside a seed
 - ACTS seeding expert will help: need to share the code and eic running environment
 - Check if the same issue for higher p tracks (e.g. 2 GeV)
- Fine-tuning the configure-table for seeding
 - * rMax, zMin, zMax: detector bounds seen by the seeding algorithm (it's better to have the track exiting the volumn hence for low p tracks a smaller volumn might work better)
 - radLengthPerSeed: radiation length for multiple scattering (M.S.) calculation
 - sigmaScattering: scattering allowed in unit of standard M.S.
 - Constrain the triplet to be in a homognous B field (drop the forward GEM hit ~3m)